Categories: NATURE

Trion sensing of a zero-field composite Fermi liquid


  • Willett, R. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776–1779 (1987).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain, J. K. Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199–202 (1989).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Coulomb barrier to tunneling between parallel two-dimensional electron systems. Phys. Rev. Lett. 69, 3804–3807 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Halperin, B. I., Lee, P. A. & Read, N. Theory of the half-filled Landau level. Phys. Rev. B 47, 7312–7343 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Goldman, V. J., Su, B. & Jain, J. K. Detection of composite fermions by magnetic focusing. Phys. Rev. Lett. 72, 2065–2068 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Willett, R. L., Ruel, R. R., West, K. W. & Pfeiffer, L. N. Experimental demonstration of a Fermi surface at one-half filling of the lowest Landau level. Phys. Rev. Lett. 71, 3846–3849 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, W., Stormer, H. L., Pfeiffer, L. N., Baldwin, K. W. & West, K. W. How real are composite fermions? Phys. Rev. Lett. 71, 3850–3853 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Willett, R. L., Ruel, R. R., Paalanen, M. A., West, K. W. & Pfeiffer, L. N. Enhanced finite-wave-vector conductivity at multiple even-denominator filling factors in two-dimensional electron systems. Phys. Rev. B 47, 7344–7347 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Smet, J. H. et al. Magnetic focusing of composite fermions through arrays of cavities. Phys. Rev. Lett. 77, 2272–2275 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Halperin, B. I. & Jain, J. K. Fractional Quantum Hall Effects: New Developments (World Scientific, 2020).

  • Goldman, H., Reddy, A. P., Paul, N. & Fu, L. Zero-field composite Fermi liquid in twisted semiconductor bilayers. Phys. Rev. Lett. 131, 136501 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, J., Wang, J., Ledwith, P. J., Vishwanath, A. & Parker, D. E. Composite Fermi liquid at zero magnetic field in twisted MoTe2. Phys. Rev. Lett. 131, 136502 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).

    CAS 

    Google Scholar
     

  • Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sun, K., Gu, Z., Katsura, H. & Das Sarma, S. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 106, 236803 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sheng, D. N., Gu, Z.-C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. X 1, 021014 (2011).


    Google Scholar
     

  • Xiao, D., Zhu, W., Ran, Y., Nagaosa, N. & Okamoto, S. Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures. Nat. Commun. 2, 596 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

  • Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H., Kumar, U., Sun, K. & Lin, S.-Z. Spontaneous fractional Chern insulators in transition metal dichalcogenide moiré superlattices. Phys. Rev. Res. 3, L032070 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yu, H., Chen, M. & Yao, W. Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors. Natl Sci. Rev. 7, 12–20 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reddy, A. P., Alsallom, F., Zhang, Y., Devakul, T. & Fu, L. Fractional quantum anomalous Hall states in twisted bilayer MoTe2 and WSe2. Phys. Rev. B 108, 085117 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Crépel, V. & Fu, L. Anomalous Hall metal and fractional Chern insulator in twisted transition metal dichalcogenides. Phys. Rev. B 107, L201109 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Reddy, A. P. & Fu, L. Toward a global phase diagram of the fractional quantum anomalous Hall effect. Phys. Rev. B 108, 245159 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, B., Qiu, W.-X. & Wu, F. Electrically tuned topology and magnetism in twisted bilayer MoTe2 at νh = 1. Phys. Rev. B 109, L041106 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, C. et al. Fractional Chern insulator in twisted bilayer MoTe2. Phys. Rev. Lett. 132, 036501 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, X.-Y., Zhang, Y.-H. & Senthil, T. Phase transitions out of quantum Hall states in moiré materials. Phys. Rev. B 109, 085143 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yu, J. et al. Fractional Chern insulators versus nonmagnetic states in twisted bilayer MoTe2. Phys. Rev. B 109, 045147 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jia, Y. et al. Moiré fractional Chern insulators. I. First-principles calculations and continuum models of twisted bilayer MoTe2. Phys. Rev. B 109, 205121 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luo, X.-J., Qiu, W.-X. & Wu, F. Majorana zero modes in twisted transition metal dichalcogenide homobilayers. Phys. Rev. B 109, L041103 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Morales-Durán, N., Wei, N., Shi, J. & MacDonald, A. H. Magic angles and fractional Chern insulators in twisted homobilayer transition metal dichalcogenides. Phys. Rev. Lett. 132, 096602 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Goldberg, B. B., Heiman, D., Pinczuk, A., Pfeiffer, L. & West, K. Optical investigations of the integer and fractional quantum Hall effects: energy plateaus, intensity minima, and line splitting in band-gap emission. Phys. Rev. Lett. 65, 641–644 (1990).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Byszewski, M. et al. Optical probing of composite fermions in a two-dimensional electron gas. Nat. Phys. 2, 239–243 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Redekop, E. et al. Direct magnetic imaging of fractional Chern insulators in twisted MoTe2 with a superconducting sensor. Preprint at https://doi.org/10.48550/arXiv.2405.10269 (2024).

  • Anderson, E. et al. Programming correlated magnetic states with gate-controlled moiré geometry. Science 381, 325–330 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji, Z. et al. Local probe of bulk and edge states in a fractional Chern insulator. Preprint at https://doi.org/10.48550/arXiv.2404.07157 (2024).

  • He, M. et al. Valley phonons and exciton complexes in a monolayer semiconductor. Nat. Commun. 11, 618 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Handa, T. et al. Spontaneous exciton dissociation in transition metal dichalcogenide monolayers. Sci. Adv. 10, eadj4060 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayakawa, J., Muraki, K. & Yusa, G. Real-space imaging of fractional quantum Hall liquids. Nat. Nanotechnol. 8, 31–35 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hashimoto, K. et al. Quantum Hall transition in real space: from localized to extended states. Phys. Rev. Lett. 101, 256802 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • He, S., Platzman, P. M. & Halperin, B. I. Tunneling into a two-dimensional electron system in a strong magnetic field. Phys. Rev. Lett. 71, 777–780 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Read, N. Theory of the half-filled Landau level. Semicond. Sci. Technol. 9, 1859 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Geraedts, S. D., Wang, J., Rezayi, E. H. & Haldane, F. D. M. Berry phase and model wave function in the half-filled Landau level. Phys. Rev. Lett. 121, 147202 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Note-Taking App Craft Updated With New Task Management Features and More

    The standout feature is the ability to create and stricter your ideas into a beautiful…

    15 hours ago

    Monster Energy’s Ayumu Hirano Claims Victory in Men’s Snowboard Halfpipe at the FIS World Cup at Copper Mountain

    Monster Energy congratulates team rider Ayumu Hirano on claiming first place in the Men's Snowboard…

    15 hours ago

    Mother of all bubbles: This is America’s ‘fatal flaw,’ expert says

    © 2024 Fortune Media IP Limited. All Rights Reserved. Use of this site constitutes acceptance…

    16 hours ago

    Qualcomm wins a legal battle over Arm chip licensing

    A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…

    3 days ago

    Three Comic/Movie/Band Reviews | Cup of Jo

    Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…

    3 days ago

    Actually, Flipping Properties Can Improve Housing Affordability—Here’s How

    15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…

    3 days ago