Categories: NATURE

Transport and inhibition mechanisms of the human noradrenaline transporter


  • Silverberg, A. B., Shah, S. D., Haymond, M. W. & Cryer, P. E. Norepinephrine: hormone and neurotransmitter in man. Am. J. Physiol. 234, E252 (1978).

    CAS 
    PubMed 

    Google Scholar
     

  • Pacholczyk, T., Blakely, R. D. & Amara, S. G. Expression cloning of a cocaine-and antidepressant-sensitive human noradrenaline transporter. Nature 350, 350–354 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mandela, P. & Ordway, G. A. The norepinephrine transporter and its regulation. J. Neurochem. 97, 310–333 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kristensen, A. S. et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol. Rev. 63, 585–640 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brust, A. et al. χ-Conopeptide pharmacophore development: toward a novel class of norepinephrine transporter inhibitor (Xen2174) for pain. J. Med. Chem. 52, 6991–7002 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Llorca-Torralba, M., Borges, G., Neto, F., Mico, J. A. & Berrocoso, E. Noradrenergic locus coeruleus pathways in pain modulation. Neuroscience 338, 93–113 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pertovaara, A. Noradrenergic pain modulation. Prog. Neurobiol. 80, 53–83 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berridge, C. W., Schmeichel, B. E. & España, R. A. Noradrenergic modulation of wakefulness/arousal. Sleep Med. Rev. 16, 187–197 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Jansen, A. S., Nguyen, X. V., Karpitskiy, V., Mettenleiter, T. C. & Loewy, A. D. Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270, 644–646 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bobb, A. J. et al. Support for association between ADHD and two candidate genes: NET1 and DRD1. Am. J. Med. Genet. B 134, 67–72 (2005).

    Article 

    Google Scholar
     

  • Lake, C. R. et al. High plasma norepinephrine levels in patients with major affective disorder. Am. J. Psychiatry 139, 1315–1318 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bohn, L. M., Xu, F., Gainetdinov, R. R. & Caron, M. G. Potentiated opioid analgesia in norepinephrine transporter knock-out mice. J. Neurosci. 20, 9040–9045 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Penmatsa, A., Wang, K. H. & Gouaux, E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503, 85–90 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, K. H., Penmatsa, A. & Gouaux, E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521, 322–327 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pidathala, S., Mallela, A. K., Joseph, D. & Penmatsa, A. Structural basis of norepinephrine recognition and transport inhibition in neurotransmitter transporters. Nat. Commun. 12, 2199 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coleman, J. A. & Gouaux, E. Structural basis for recognition of diverse antidepressants by the human serotonin transporter. Nat. Struct. Mol. Biol. 25, 170–175 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coleman, J. A., Green, E. M. & Gouaux, E. X-ray structures and mechanism of the human serotonin transporter. Nature 532, 334–339 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coleman, J. A. et al. Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport. Nature 569, 141–145 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plenge, P. et al. The antidepressant drug vilazodone is an allosteric inhibitor of the serotonin transporter. Nat. Commun. 12, 5063 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paczkowski, F. A., Sharpe, I. A., Dutertre, S. & Lewis, R. J. χ-Conotoxin and tricyclic antidepressant interactions at the norepinephrine transporter define a new transporter model. J. Biol. Chem. 282, 17837–17844 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharpe, I. A. et al. Two new classes of conopeptides inhibit the α1-adrenoceptor and noradrenaline transporter. Nat. Neurosci. 4, 902–907 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharpe, I. A. et al. Inhibition of the norepinephrine transporter by the venom peptide χ-MrIA: site of action, Na+ dependence, and structure–activity relationship. J. Biol. Chem. 278, 40317–40323 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. W., Turk, B. E. & Rudnick, G. Control of serotonin transporter phosphorylation by conformational state. Proc. Natl Acad. Sci. USA 113, E2776–E2783 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramamoorthy, S., Shippenberg, T. S. & Jayanthi, L. D. Regulation of monoamine transporters: role of transporter phosphorylation. Pharmacol. Ther. 129, 220–238 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hillhouse, T. M. & Porter, J. H. A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp. Clin. Psychopharmacol. 23, 1–21 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hahn, M. K., Robertson, D. & Blakely, R. D. A mutation in the human norepinephrine transporter gene (SLC6A2) associated with orthostatic intolerance disrupts surface expression of mutant and wild-type transporters. J. Neurosci. 23, 4470–4478 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurian, M. A. et al. Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J. Clin. Invest. 119, 1595–1603 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurian, M. A. et al. Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study. Lancet Neurol. 10, 54–62 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beerepoot, P., Lam, V. M. & Salahpour, A. Pharmacological chaperones of the dopamine transporter rescue dopamine transporter deficiency syndrome mutations in heterologous cells. J. Biol. Chem. 291, 22053–22062 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shahsavar, A. et al. Structural insights into the inhibition of glycine reuptake. Nature 591, 677–681 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Motiwala, Z. et al. Structural basis of GABA reuptake inhibition. Nature 606, 820–826 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melikian, H. E., Ramamoorthy, S., Tate, C. G. & Blakely, R. D. Inability to N-glycosylate the human norepinephrine transporter reduces protein stability, surface trafficking, and transport activity but not ligand recognition. Mol. Pharmacol. 50, 266–276 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Sogawa, C. et al. C-terminal region regulates the functional expression of human noradrenaline transporter splice variants. Biochem. J. 401, 185–195 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bauman, P. A. & Blakely, R. D. Determinants within the C-terminus of the human norepinephrine transporter dictate transporter trafficking, stability, and activity. Arch. Biochem. Biophys. 404, 80–91 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, D. & Gouaux, E. Illumination of serotonin transporter mechanism and role of the allosteric site. Sci. Adv. 7, eabl3857 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis, R. J., Alewood, P. F., Alewood, D. & Palant, E. Type II chi-conotoxin peptides (noradrenaline transporter inhibitors). US Patent US7507717B2 (2009).

  • Nilsson, K. P. R. et al. Solution structure of χ-conopeptide MrIA, a modulator of the human norepinephrine transporter. Pept. Sci. 80, 815–823 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Sharpe, I. A. et al. Inhibition of the norepinephrine transporter by the venom peptide chi-MrIA. Site of action, Na+ dependence, and structure-activity relationship. J. Biol. Chem. 278, 40317–40323 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, H. H., Wall, S. & Rudnick, G. Ion coupling stoichiometry for the norepinephrine transporter in membrane vesicles from stably transfected cells. J. Biol. Chem. 271, 6911–6916 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramamoorthy, S. et al. Expression of a cocaine-sensitive norepinephrine transporter in the human placental syncytiotrophoblast. Biochemistry 32, 1346–1353 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koldsø, H. et al. Unbiased simulations reveal the inward-facing conformation of the human serotonin transporter and Na(+) ion release. PLoS Comput. Biol. 7, e1002246 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Felts, B. et al. The two Na+ sites in the human serotonin transporter play distinct roles in the ion coupling and electrogenicity of transport. J. Biol. Chem. 289, 1825–1840 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ascher, J. A. et al. Bupropion: a review of its mechanism of antidepressant activity. J. Clin. Psychiatry 56, 395–401 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Shalabi, A. R., Walther, D., Baumann, M. H. & Glennon, R. A. Deconstructed analogues of bupropion reveal structural requirements for transporter inhibition versus substrate-induced neurotransmitter release. ACS Chem. Neurosci. 8, 1397–1403 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, A. W., Lebel, L. A., Howard, H. R. & Zorn, S. H. Ziprasidone: a novel antipsychotic agent with a unique human receptor binding profile. Eur. J. Pharmacol. 425, 197–201 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cross, A. J. et al. Quetiapine and its metabolite norquetiapine: translation from in vitro pharmacology to in vivo efficacy in rodent models. Br. J. Pharmacol. 173, 155–166 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, W. C. & Amara, S. G. Membrane cholesterol modulates the outward facing conformation of the dopamine transporter and alters cocaine binding. J. Biol. Chem. 285, 32616–32626 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeppelin, T., Ladefoged, L. K., Sinning, S., Periole, X. & Schiøtt, B. A direct interaction of cholesterol with the dopamine transporter prevents its out-to-inward transition. PLoS Comput. Biol. 14, e1005907 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, R. et al. Enhanced activity against multidrug-resistant bacteria through coapplication of an analogue of tachyplesin I and an inhibitor of the QseC/B signaling pathway. J. Med. Chem. 63, 3475–3484 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeLano, W. L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 40, 82–92 (2002).


    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    How Punctual Express Is Revolutionizing Emergency & Evacuation Transport in NYC

    Before you can login, you must activate your account with the code sent to your…

    12 hours ago

    Celebrating Another Year of #WeArePlay

    Posted by Robbie McLachlan – Developer Marketing This year #WeArePlay took us on a journey…

    12 hours ago

    Interact Marketing Expands AI Marketing Offerings for 2025

    "As AI technology evolves, so do our strategies," said Joe Beccalori, CEO of Interact Marketing.…

    12 hours ago

    Retail return policies and deadlines for unwanted holiday gifts: Walmart, Target, Amazon, Apple and more

    © 2024 Fortune Media IP Limited. All Rights Reserved. Use of this site constitutes acceptance…

    13 hours ago

    The FTC orders Marriott and Starwood to beef up their data security

    The Federal Trade Commission announced on Friday it finalized an order (pdf) requiring Marriott International…

    2 days ago

    Have a Cozy Weekend. | Cup of Jo

    What are you up to this weekend? New York has gotten cold! Last night, the…

    2 days ago