Categories: NATURE

The Massalia asteroid family as the origin of ordinary L chondrites


  • Heck, P. et al. Rare meteorites common in the Ordovician period. Nat. Astron. 1, 0035 (2017).


    Google Scholar
     

  • Schmieder, M. & Kring, D. A. Earth’s impact events through geologic time: a list of recommended ages for terrestrial impact structures and deposits. Astrobiology 20, 91–141 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • Kenkmann, T. The terrestrial impact crater record: A statistical analysis of morphologies, structures, ages, lithologies, and more. Meteorit. Planet. Sci. 56, 1024–1070 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Schmitz, B. et al. An extraterrestrial trigger for the mid-Ordovician ice age: Dust from the breakup of the L-chondrite parent body. Sci. Adv. 5, eaax4184 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Swindle, T. D., Kring, D. A. & Weirich, J. R. 40Ar/39Ar ages of impacts involving ordinary chondrite meteorites. Geol. Soc. Lond. Spec. Publ. 378, 333–347 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Sykes, M. V. Zodiacal dust bands: Their relation to asteroid families. Icarus 85, 267–289 (1990).

    ADS 

    Google Scholar
     

  • Reach, W. T., Franz, B. A. & Weiland, J. L. The three-dimensional structure of the zodiacal dust bands. Icarus 127, 461–484 (1997).

    ADS 

    Google Scholar
     

  • Walton, C. R. et al. In-situ phosphate U-Pb ages of the L chondrites. Geochim. Cosmochim. Acta 359, 191–204 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Heymann, D. On the origin of hypersthene chondrites: ages and shock effects of black chondrites. Icarus 6, 189–221 (1967).

    ADS 
    CAS 

    Google Scholar
     

  • Marti, K. & Graf, T. Cosmic-ray exposure history of ordinary chondrites. Annu. Rev. Earth Planet. Sci. 20, 221–243 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • Rubin, A. E. Metallic copper in ordinary chondrites. Meteoritics 29, 93–98 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • Bischoff, A., Schleiting, M. & Patzek, M. Shock stage distribution of 2280 ordinary chondrites—can bulk chondrites with a shock stage of S6 exist as individual rocks? Meteorit. Planet. Sci. 54, 2189–2202 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Korochantseva, E. V. et al. L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar-39Ar dating. Meteorit. Planet. Sci. 42, 113–130 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Haack, H., Farinella, P., Scott, E. R. D. & Keil, K. Meteoritic, asteroidal, and theoretical constraints on the 500 Ma disruption of the L chondrite parent body. Icarus 119, 182–191 (1996).

    ADS 

    Google Scholar
     

  • Schmitz, B., Peucker-Ehrenbrink, B., Lindström, M. & Tassinari, M. Accretion rates of meteorites and cosmic dust in the Early Ordovician. Science 278, 88–90 (1997).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmitz, B., Tassinari, M. & Peucker-Ehrenbrink, B. A rain of ordinary chondritic meteorites in the early Ordovician. Earth Planet. Sci. Lett. 194, 1–15 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Terfelt, F. & Schmitz, B. Asteroid break-ups and meteorite delivery to Earth the past 500 million years. Proc. Natl Acad. Sci. 118, e2020977118 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Greenwood, R. C., Burbine, T. H. & Franchi, I. A. Linking asteroids and meteorites to the primordial planetesimal population. Geochim. Cosmochim. Acta 277, 377–406 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Nesvorný, D., Brož, M. & Carruba, V. in Asteroids IV (eds Bottke, W. F. et al.) 297–321 (Univ. Arizona Press, 2015).

  • Gaffey, M. J. et al. Mineralogical variations within the S-type asteroid class. Icarus 106, 573–602 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Nakamura, T. et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113–1116 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vernazza, P. et al. Multiple and fast: the accretion of ordinary chondrite parent bodies. Astrophys. J. 791, 120 (2014).

    ADS 

    Google Scholar
     

  • Brož, M. et al. Young asteroid families as the primary source of meteorites. Nature https://doi.org/10.1038/s41586-024-08006-7 (2024).

  • Pieters, C. M. and Hiroi, T. RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility. In 35th Lunar and Planetary Science Conference, abstract no. 1720 (2004).

  • Milliken, R. E., Hiroi, T. & Patterson, W., The NASA Reflectance Experiment Laboratory (RELAB) Facility: Past, Present, and Future. In 47th Lunar and Planetary Science Conference, LPI Contribution No. 1903, p. 2058 (2016).

  • Brunetto, R. et al. Modeling asteroid surfaces from observations and irradiation experiments: The case of 832 Karin. Icarus 184, 327–337 (2006).

    ADS 

    Google Scholar
     

  • Shkuratov, Y., Starukhina, L., Hoffmann, H. & Arnold, G. A model of spectral albedo of particulate surfaces: implications for optical properties of the moon. Icarus 137, 235–246 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Binzel, R. P. et al. Compositional distributions and evolutionary processes for the near-Earth object population: Results from the MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS). Icarus 324, 41–76 (2019).

    ADS 

    Google Scholar
     

  • Gaffey, M. J. & Fieber-Beyer, S. K., Is the (20) Massalia family the source of the L-chondrites? In 50th Lunar and Planetary Science Conference, no. 2132, id. 1441 (2019).

  • Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus 312, 181–207 (2018).

    ADS 

    Google Scholar
     

  • Nesvorný, D., Bottke, W. F., Levison, H. F. & Dones, L. Recent origin of the solar system dust bands. Astrophys. J. 591, 486–497 (2003).

    ADS 

    Google Scholar
     

  • Vokrouhlický, D., Brož, M., Bottke, W. F., Nesvorný, D. & Morbidelli, A. Yarkovsky/YORP chronology of asteroid families. Icarus 182, 118–142 (2006).

    ADS 

    Google Scholar
     

  • Spoto, F., Milani, A. & Knežević, Z. Asteroid family ages. Icarus 257, 275–289 (2015).

    ADS 

    Google Scholar
     

  • Marsset, M. et al. The debiased compositional distribution of MITHNEOS: global match between the near-Earth and main-belt asteroid populations, and excess of D-type near-Earth objects. Astron. J. 163, 165 (2022).

    ADS 

    Google Scholar
     

  • Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Vernazza, P. et al. Compositional differences between meteorites and near-Earth asteroids. Nature 454, 858–860 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, C. A. & Binzel, R. P. Identifying meteorite source regions through near-Earth object spectroscopy. Icarus 205, 419–429 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • de León, J., Licandro, J., Serra-Ricart, M., Pinilla-Alonso, & Campins, H. Observations, compositional, and physical characterization of near-Earth and Mars-crosser asteroids from a spectroscopic survey. Astron. Astrophys. 517, A23 (2010).


    Google Scholar
     

  • Dunn, T. L., Burbine, T. H., Bottke, W. F.Jr & Clark, J. P. Mineralogies and source regions of near-Earth asteroids. Icarus 222, 273–282 (2013).

    ADS 

    Google Scholar
     

  • Ali-Lagoa, V., Müller, T. G., Usui, F. & Hasegawa, S. The AKARI IRC asteroid flux catalogue: updated diameters and albedos. Astron Astrophys. 612, A85 (2018).

    ADS 

    Google Scholar
     

  • Alí-Lagoa, V. et al. Thermal properties of large main-belt asteroids observed by Herschel PACS. Astron. Astrophys. 638, A84 (2020).


    Google Scholar
     

  • Herald, D. et al. Small Bodies Occultations Bundle V3.0. NASA Planetary Data System https://doi.org/10.26033/ap0g-wf63 (2019).

  • Mainzer, A. K. et al. NEOWISE Diameters and Albedos V2.0. NASA Planetary Data System https://doi.org/10.26033/18S3-2Z54 (2019).

  • Gail, H.-P. & Trieloff, M. Thermal history modelling of the L chondrite parent body. Astron. Astrophys. 628, A77 (2019).

    CAS 

    Google Scholar
     

  • Love, S. G. & Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Sykes, M. Physical properties of asteroid dust bands and their sources. Icarus 181, 107–144 (2006).

    ADS 

    Google Scholar
     

  • Gattacceca, J. et al. The Meteoritical Bulletin, No. 110. Meteorit. Planet. Sci. 57, 2102–2105 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Liao, S., Huyskens, M. H., Yin, Q.-Z. & Schmitz, B. Absolute dating of the L-chondrite parent body breakup with high-precision U–Pb zircon geochronology from Ordovician limestone. Earth Planet Sci. Lett. 547, 116442 (2020).

    CAS 

    Google Scholar
     

  • Eugster, O., Herzog, G. F., Marti, K. & Caffee, M. W. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y. Jr) 829–851 (Univ. Arizona Press, 2006).

  • Farley, K. A., Montanari, A., Shoemaker, E. M. & Shoemaker, C. S. Geochemical evidence for a comet shower in the Late Eocene. Science 280, 1250–1253 (1998).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schenk, P. et al. The geologically recent giant impact basins at Vesta’s South Pole. Science 336, 694–697 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ivezić, Ž. et al. LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019).

    ADS 

    Google Scholar
     

  • LSST Science Collaboration. LSST Science Book, Version 2.0. Preprint at arxiv.org/abs/0912.0201 (2009).

  • Colas, F. et al. FRIPON: a worldwide network to track incoming meteoroids. Astron. Astrophys. 644, A53 (2020).


    Google Scholar
     

  • Spurný, P., Borovička, J. & Shrbený, L. The Žďár nad Sázavou meteorite fall: Fireball trajectory, photometry, dynamics, fragmentation, orbit, and meteorite recovery. Meteorit. Planet. Sci. 55, 376–401 (2020).

    ADS 

    Google Scholar
     

  • Jenniskens, P. et al. The Creston, California, meteorite fall and the origin of L chondrites. Meteorit. Planet. Sci. 54, 699–720 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Nesvorný, D. et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713, 816–836 (2010).

    ADS 

    Google Scholar
     

  • Rayner, J. T. et al. SpeX: a medium-resolution 0.8-5.5 micron spectrograph and imager for the NASA Infrared Telescope Facility. Publ. Astron. Soc. Pac. 115, 362–382 (2003).

    ADS 

    Google Scholar
     

  • Rivkin, A. S., Binzel, R. P. & Bus, S. J. Constraining near-Earth object albedos using near-infrared spectroscopy. Icarus 175, 175–180 (2005).

    ADS 

    Google Scholar
     

  • Bus, S. J. & Binzel, R. P. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: the observations. Icarus 158, 106–145 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Burbine, T. H. & Binzel, R. P. Small Main-Belt Asteroid Spectroscopic Survey in the near-infrared. Icarus 159, 468–499 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • McGraw, A. M., Reddy, V. & Sanchez, J. A. Spectroscopic characterization of the Gefion Asteroid Family: implications for L-chondrite link. Mon. Not. R. Astron. Soc. 515, 5211–5218 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Clayton, R. N. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Britt, D. T. & Pieters, C. M. Black ordinary chondrites: an analysis of abundance and fall frequency. Meteoritics 26, 279–285 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • Reddy, V. et al. Chelyabinsk meteorite explains unusual spectral properties of Baptistina asteroid family. Icarus 237, 116–130 (2014).

    ADS 

    Google Scholar
     

  • Kohout, T. et al. Mineralogy, reflectance spectra, and physical properties of the Chelyabinsk LL5 chondrite – Insight into shock-induced changes in asteroid regoliths. Icarus 228, 78–85 (2014).

    ADS 

    Google Scholar
     

  • Kohout, T. et al. Experimental constraints on the ordinary chondrite shock darkening caused by asteroid collisions. Astron. Astrophys. 639, A146 (2020).

    CAS 

    Google Scholar
     

  • DeMeo, F. E. et al. Connecting asteroids and meteorites with visible and near-infrared spectroscopy. Icarus 380, 114971 (2022).

    CAS 

    Google Scholar
     

  • Cloutis, E. A., Gaffey, M. J., Jackowski, T. L. & Reed, K. L. Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra. J. Geophys. Res. 91, 11641–11653 (1986).

    ADS 

    Google Scholar
     

  • Vernazza, P. et al. Mid-infrared spectral variability for compositionally similar asteroids: Implications for asteroid particle size distributions. Icarus 207, 800–809 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Binzel, R. P. et al. Spectral properties and composition of potentially hazardous Asteroid (99942) Apophis. Icarus 200, 480–485 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Dunn, T. L., McCoy, T. J., Sunshine, J. M. & McSween, H. Y. A coordinated spectral, mineralogical, and compositional study of ordinary chondrites. Icarus 208, 789–797 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus 204, 558–573 (2009).

    ADS 

    Google Scholar
     

  • Nesvorný, D. et al. NEOMOD: A new orbital distribution model for near-Earth objects. Astron. J. 166, 55 (2023).

  • Heck, P. R., Schmitz, B., Baur, H., Halliday, A. N. & Wieler, R. Fast delivery of meteorites to Earth after a major asteroid collision. Nature 430, 323–325 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nesvorný, D., Vokrouhlický, D., Morbidelli, A. & Bottke, W. F. Asteroidal source of L chondrite meteorites. Icarus 200, 698–701 (2009).

    ADS 

    Google Scholar
     

  • Levison, H. F. & Duncan, M. J. The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994).

    ADS 

    Google Scholar
     

  • Quinn, T. R., Tremaine, S. & Duncan, M. A Three Million Year Integration of the Earth’s Orbit. Astron. J. 101, 2287 (1991).

    ADS 

    Google Scholar
     

  • Šidlichovský, M. & Nesvorný, D. Frequency modified Fourier transform and its application to asteroids. Celest. Mech. Dyn. Astron. 65, 137–148 (1996).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Vokrouhlický, D. & Farinella, P. The Yarkovsky seasonal effect on asteroidal fragments: a nonlinearized theory for spherical bodies. Astron. J. 118, 3049–3060 (1999).

    ADS 

    Google Scholar
     

  • Vokrouhlický, D. Diurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments. I. Linear theory. Astron. Astrophys. 335, 1093–1100 (1998).

    ADS 

    Google Scholar
     

  • Čapek, D. & Vokrouhlický, D. The YORP effect with finite thermal conductivity. Icarus 172, 526–536 (2004).

    ADS 

    Google Scholar
     

  • Farinella, P., Vokrouhlický, D. & Hartmann, W. K. Meteorite delivery via Yarkovsky orbital drift. Icarus 132, 378–387 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Holsapple, K. A. Spin limits of Solar System bodies: From the small fast-rotators to 2003 EL61. Icarus 187, 500–509 (2007).

    ADS 

    Google Scholar
     

  • Brož, M., Vokrouhlický, D., Morbidelli, A., Nesvorný, D. & Bottke, W. F. Did the Hilda collisional family form during the late heavy bombardment? Mon. Not. R. Astron. Soc. 414, 2716–2727 (2011).

    ADS 

    Google Scholar
     

  • Novaković, B. & Radović, V., Asteroid Families Portal. http://asteroids.matf.bg.ac.rs/fam/ (2019).

  • Bottke, W. F. et al. in Asteroids IV (eds Michel, P. et al.) 701–724 (Univ. Arizona Press, 2015).



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Note-Taking App Craft Updated With New Task Management Features and More

    The standout feature is the ability to create and stricter your ideas into a beautiful…

    16 hours ago

    Monster Energy’s Ayumu Hirano Claims Victory in Men’s Snowboard Halfpipe at the FIS World Cup at Copper Mountain

    Monster Energy congratulates team rider Ayumu Hirano on claiming first place in the Men's Snowboard…

    17 hours ago

    Mother of all bubbles: This is America’s ‘fatal flaw,’ expert says

    © 2024 Fortune Media IP Limited. All Rights Reserved. Use of this site constitutes acceptance…

    17 hours ago

    Qualcomm wins a legal battle over Arm chip licensing

    A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…

    3 days ago

    Three Comic/Movie/Band Reviews | Cup of Jo

    Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…

    3 days ago

    Actually, Flipping Properties Can Improve Housing Affordability—Here’s How

    15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…

    3 days ago