Categories: NATURE

Terahertz field-induced metastable magnetization near criticality in FePS3


  • Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McLeod, A. S. et al. Multi-messenger nanoprobes of hidden magnetism in a strained manganite. Nat. Mater. 19, 397–404 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Disa, A. S. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Disa, A. S. et al. Photo-induced high-temperature ferromagnetism in YTiO3. Nature 617, 73–78 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kogar, A. et al. Light-induced charge density wave in LaTe3. Nat. Phys. 16, 159–163 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sedrakyan, T. A. & Chubukov, A. V. Pseudogap in underdoped cuprates and spin-density-wave fluctuations. Phys. Rev. B 81, 174536 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Ye, M. & Chubukov, A. V. Hubbard model on a triangular lattice: pseudogap due to spin density wave fluctuations. Phys. Rev. B 100, 35135 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Miiller, K. A., Berlinger, W. & Tosatti, E. Indication for a novel phase in the quantum paraelectric regime of SrTiO3. Z. Phys. B Condens. Matter 84, 277583 (1991).


    Google Scholar
     

  • Latini, S. et al. The ferroelectric photo ground state of SrTiO3: cavity materials engineering. Proc. Natl Acad. Sci. USA 118, e2105618118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viñas Boström, E., Sriram, A., Claassen, M. & Rubio, A. Controlling the magnetic state of the proximate quantum spin liquid α-RuCl3 with an optical cavity. npj Comput. Mater. 9, 202 (2023).

  • Afanasiev, D. et al. Ultrafast control of magnetic interactions via light-driven phonons. Nat. Mater. 20, 607–611 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • de la Torre, A. et al. Colloquium: nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 41002 (2021).

    Article 

    Google Scholar
     

  • Brec, R., Schleich, D. M., Ouvrard, G., Louisy, A. & Rouxel, J. Physical properties of lithium intercalation compounds of the layered transition-metal chalcogenophosphites. Inorg. Chem. 18, 1814–1818 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, K. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 10, 345 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, K. et al. Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS3 probed by Raman spectroscopy. 2D Mater. 6, 041001 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Joy, P. A. & Vasudevan, S. Magnetism in the layered transition-metal thiophosphates MPS3 (M=Mn, Fe, and Ni). Phys. Rev. B 46, 5425–5433 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sivadas, N., Daniels, M. W., Swendsen, R. H., Okamoto, S. & Xiao, D. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B 91, 235425 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ergeçen, E. et al. Coherent detection of hidden spin-lattice coupling in a van der Waals antiferromagnet. Proc. Natl Acad. Sci. USA 120, e2208968120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, F. et al. Dynamical criticality of spin-shear coupling in van der Waals antiferromagnets. Nat. Commun. 13, 6598 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, S. et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3. Nature 583, 785–789 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ergeçen, E. et al. Magnetically brightened dark electron-phonon bound states in a van der Waals antiferromagnet. Nat. Commun. 13, 98 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belvin, C. A. et al. Exciton-driven antiferromagnetic metal in a correlated van der Waals insulator. Nat. Commun. 12, 4837 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wildes, A. R., Zhitomirsky, M. E., Ziman, T., Lançon, D. & Walker, H. C. Evidence for biquadratic exchange in the quasi-two-dimensional antiferromagnet FePS3. J. Appl. Phys. 127, 223903 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zong, A. et al. Spin-mediated shear oscillators in a van der waals antiferromagnet. Nature 620, 988–993 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McCreary, A. et al. Quasi-two-dimensional magnon identification in antiferromagnetic FePS3 via magneto-Raman spectroscopy. Phys. Rev. B 101, 64416 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, S. et al. Direct observation of magnon-phonon strong coupling in two-dimensional antiferromagnet at high magnetic fields. Phys. Rev. Lett. 127, 97401 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Coherent strong-coupling of terahertz magnons and phonons in a Van der Waals antiferromagnetic insulator. Preprint at https://arxiv.org/abs/2108.11619 (2021).

  • Mertens, F. et al. Ultrafast coherent THz lattice dynamics coupled to spins in the van der Waals antiferromagnet FePS3. Adv. Mater. 35, 2208355 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X.-X. et al. Spin dynamics slowdown near the antiferromagnetic critical point in atomically thin FePS3. Nano Lett. 21, 5045–5052 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lançon, D. et al. Magnetic structure and magnon dynamics of the quasi-two-dimensional antiferromagnet FePS3. Phys. Rev. B 94, 214407 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ferrenberg, A. M., Xu, J. & Landau, D. P. Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model. Phys. Rev. E 97, 43301 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hohenberg, P. C. & Halperin, B. I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Discovery of enhanced lattice dynamics in a single-layered hybrid perovskite. Sci. Adv. 9, eadg4417 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Juraschek, D. M. & Maehrlein, S. F. Sum-frequency ionic Raman scattering. Phys. Rev. B 97, 174302 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cui, J. et al. Chirality selective magnon-phonon hybridization and magnon-induced chiral phonons in a layered zigzag antiferromagnet. Nat. Commun. 14, 3396 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khalsa, G., Benedek, N. A. & Moses, J. Ultrafast control of material optical properties via the infrared resonant raman effect. Phys. Rev. X 11, 021067 (2021).

    CAS 

    Google Scholar
     

  • Padmanabhan, P. et al. Coherent helicity-dependent spin-phonon oscillations in the ferromagnetic van der Waals crystal CrI3. Nat. Commun. 13, 4473 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Padmanabhan, H. et al. Interlayer magnetophononic coupling in MnBi2Te4. Nat. Commun. 13, 1929 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonze, X. et al. The Abinit project: impact, environment and recent developments. Comput. Phys. Commun. 248, 107042 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gonze, X. First-principles responses of solids to atomic displacements and homogeneous electric fields: implementation of a conjugate-gradient algorithm. Phys. Rev. B 55, 10337–10354 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Amadon, B. et al. Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals. Phys. Rev. B 77, 205112 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Torrent, M., Jollet, F., Bottin, F., Zérah, G. & Gonze, X. Implementation of the projector augmented-wave method in the ABINIT code: application to the study of iron under pressure. Comput. Mater. Sci. 42, 337–351 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • He, X., Helbig, N., Verstraete, M. J. & Bousquet, E. TB2J: a Python package for computing magnetic interaction parameters. Comput. Phys. Commun. 264, 107938 (2021).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Vaclavkova, D. et al. Magnon polarons in the van der Waals antiferromagnet FePS3. Phys. Rev. B 104, 134437 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, Y. et al. Giant magnetic anisotropy in the atomically thin van der Waals antiferromagnet FePS3. Adv. Electron. Mater. 9, 2200650 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Note-Taking App Craft Updated With New Task Management Features and More

    The standout feature is the ability to create and stricter your ideas into a beautiful…

    2 hours ago

    Monster Energy’s Ayumu Hirano Claims Victory in Men’s Snowboard Halfpipe at the FIS World Cup at Copper Mountain

    Monster Energy congratulates team rider Ayumu Hirano on claiming first place in the Men's Snowboard…

    3 hours ago

    Mother of all bubbles: This is America’s ‘fatal flaw,’ expert says

    © 2024 Fortune Media IP Limited. All Rights Reserved. Use of this site constitutes acceptance…

    3 hours ago

    Qualcomm wins a legal battle over Arm chip licensing

    A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…

    2 days ago

    Three Comic/Movie/Band Reviews | Cup of Jo

    Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…

    2 days ago

    Actually, Flipping Properties Can Improve Housing Affordability—Here’s How

    15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…

    2 days ago