Categories: NATURE

Structure of apolipoprotein B100 bound to the low-density lipoprotein receptor


  • Segrest, J. P., Jones, M. K., De Loof, H. & Dashti, N. Structure of apolipoprotein B-100 in low density lipoproteins. J. Lipid Res. 42, 1346–1367 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suryawanshi, Y. N. & Warbhe, R. A. Familial hypercholesterolemia: a literature review of the pathophysiology and current and novel treatments. Cureus 15, e49121 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borén, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).

  • Yu, Y. et al. Polyhedral 3D structure of human plasma very low density lipoproteins by individual particle cryo-electron tomography1. J. Lipid Res. 57, 1879–1888 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudenko, G. et al. Structure of the LDL receptor extracellular domain at endosomal pH. Science 298, 2353–2358 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeon, H. & Blacklow, S. C. Structure and physiologic function of the low-density lipoprotein receptor. Annu. Rev. Biochem. 74, 535–562 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mhaimeed, O. et al. The importance of LDL-C lowering in atherosclerotic cardiovascular disease prevention: lower for longer is better. Am. J. Prev. Cardiol. 18, 100649 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chora, J. R., Medeiros, A. M., Alves, A. C. & Bourbon, M. Analysis of publicly available LDLR, APOB, and PCSK9 variants associated with familial hypercholesterolemia: application of ACMG guidelines and implications for familial hypercholesterolemia diagnosis. Genet. Med. 20, 591–598 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blacklow, S. C. Versatility in ligand recognition by LDL receptor family proteins: advances and frontiers. Curr. Opin. Struct. Biol. 17, 419–426 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, X. & Rapoport, T. A. Cryo-EM structure determination of small proteins by nanobody-binding scaffolds (Legobodies). Proc. Natl Acad. Sci. USA 118, e2115001118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nykjaer, A. & Willnow, T. E. The low-density lipoprotein receptor gene family: a cellular Swiss army knife. Trends Cell Biol. 12, 273–280 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, G. et al. Model of human low-density lipoprotein and bound receptor based on cryoEM. Proc. Natl Acad. Sci. USA 107, 1059–1064 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, V. et al. Three-dimensional cryoEM reconstruction of native LDL particles to 16Å resolution at physiological body temperature. PLoS One 6, e18841 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cisse, A. et al. Targeting structural flexibility in low density lipoprotein by integrating cryo-electron microscopy and high-speed atomic force microscopy. Int. J. Biol. Macromol. 252, 126345 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Construction of a biotinylated cameloid-like antibody for lable-free detection of apolipoprotein B-100. Biosens. Bioelectron. 64, 111–118 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeiran, K. et al. A new structural model of apolipoprotein B100 based on computational modeling and cross linking. Int. J. Mol. Sci. 23, 11480 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson, J. R. & Banaszak, L. J. Lipid–protein interactions in lipovitellin. Biochemistry 41, 9398–9409 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biterova, E. I. et al. The crystal structure of human microsomal triglyceride transfer protein. Proc. Natl Acad. Sci. USA 116, 17251–17260 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, R. et al. Apolipoprotein A-I structural organization in high-density lipoproteins isolated from human plasma. Nat. Struct. Mol. Biol. 18, 416–422 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esser, V., Limbird, L. E., Brown, M. S., Goldstein, J. L. & Russell, D. W. Mutational analysis of the ligand binding domain of the low density lipoprotein receptor. J. Biol. Chem. 263, 13282–13290 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russell, D. W., Brown, M. S. & Goldstein, J. L. Different combinations of cysteine-rich repeats mediate binding of low density lipoprotein receptor to two different proteins. J. Biol. Chem. 264, 21682–21688 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boren, J. et al. Identification of the low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective apo-B100. J. Clin. Invest. 101, 1084–1093 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Motazacker, M. M. et al. Advances in genetics show the need for extending screening strategies for autosomal dominant hypercholesterolaemia. Eur. Heart J. 33, 1360–1366 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodríguez-Jiménez, C. et al. Identification and functional analysis of APOB variants in a cohort of hypercholesterolemic patients. Int. J. Mol. Sci. 24, 7635 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández-Higuero, J. A. et al. Structural analysis of APOB variants, p.(Arg3527Gln), p.(Arg1164Thr) and p.(Gln4494del), causing familial hypercholesterolaemia provides novel insights into variant pathogenicity. Sci. Rep. 5, 18184 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaffney, D. et al. Independent mutations at codon 3500 of the apolipoprotein B gene are associated with hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 15, 1025–1029 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pullinger, C. R. et al. Familial ligand-defective apolipoprotein B. Identification of a new mutation that decreases LDL receptor binding affinity. J. Clin. Invest. 95, 1225–1234 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, S., Henry, L., Ho, Y. K., Pownall, H. J. & Rudenko, G. Mechanism of LDL binding and release probed by structure-based mutagenesis of the LDL receptor. J. Lipid Res. 51, 297–308 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomez, A. et al. Functional analysis of six uncharacterised mutations in LDLR gene. Atherosclerosis 291, 44–51 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benito-Vicente, A. et al. The importance of an integrated analysis of clinical, molecular, and functional data for the genetic diagnosis of familial hypercholesterolemia. Genet. Med. 17, 980–988 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duskova, L. et al. Low density lipoprotein receptor variants in the beta-propeller subdomain and their functional impact. Front. Genet. 11, 691 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. et al. Novel LDLR variants affecting low density lipoprotein metabolism identified in familial hypercholesterolemia. Mol. Biol. Rep. 51, 153 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, H. et al. Familial defective apolipoprotein B-100 and increased low-density lipoprotein cholesterol and coronary artery calcification in the Old Order Amish. Arch. Intern. Med. 170, 1850–1855 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soria, L. F. et al. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc. Natl Acad. Sci. USA 86, 587–591 (1989).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montasser, M. E. et al. Genetic and functional evidence links a missense variant in B4GALT1 to lower LDL and fibrinogen. Science 374, 1221–1227 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. In-depth mass spectrometry analysis reveals the plasma proteomic and N-glycoproteomic impact of an Amish-enriched cardioprotective variant in B4GALT1. Mol. Cell. Proteomics 22, 100595 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou, P. & Ting, A. Y. Imaging LDL receptor oligomerization during endocytosis using a co-internalization assay. ACS Chem. Biol. 6, 308–313 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Driel, I. R., Davis, C. G., Goldstein, J. L. & Brown, M. S. Self-association of the low density lipoprotein receptor mediated by the cytoplasmic domain. J. Biol. Chem. 262, 16127–16134 (1987).

    Article 
    PubMed 

    Google Scholar
     

  • Heymann, J. B. et al. Clathrin-coated vesicles from brain have small payloads: a cryo-electron tomographic study. J. Struct. Biol. 184, 43–51 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berndsen Z. T. & Cassidy, C. K. The structure of ApoB100 from human low-density lipoprotein. Preprint at bioRxiv https://doi.org/10.1101/2024.02.28.582555 (2024).

  • Lu, M. & Gursky, O. Aggregation and fusion of low-density lipoproteins in vivo and in vitro. Biomol. Concepts 4, 501–518 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Öörni, K. & Kovanen, P. T. Aggregation susceptibility of low-density lipoproteins—a novel modifiable biomarker of cardiovascular risk. J. Clin. Med. 10, 1769 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maruyama, I. N. Activation of transmembrane cell-surface receptors via a common mechanism? The “rotation model”. Bioessays 37, 959–967 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feixas, F., Lindert, S., Sinko, W. & McCammon, J. A. Exploring the role of receptor flexibility in structure-based drug discovery. Biophys. Chem. 186, 31–45 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heuser, J. E. & Anderson, R. G. Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J. Cell Biol. 108, 389–400 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beglova, N., Jeon, H., Fisher, C. & Blacklow, S. C. Cooperation between fixed and low pH-inducible interfaces controls lipoprotein release by the LDL receptor. Mol. Cell 16, 281–292 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Havel, R. J., Eder, H. A. & Bragdon, J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34, 1345–1353 (1955).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schumaker, V. N. & Puppione, D. L. Sequential flotation ultracentrifugation. Methods Enzymol. 128, 155–170 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaubatz, J. W. et al. Dynamics of dense electronegative low density lipoproteins and their preferential association with lipoprotein phospholipase A2. J. Lipid Res. 48, 348–357 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banerjee, S. et al. Proteolysis of the low density lipoprotein receptor by bone morphogenetic protein-1 regulates cellular cholesterol uptake. Sci. Rep. 9, 11416 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yost, S. A., Whidby, J., Khan, A. G., Wang, Y. & Marcotrigiano, J. Overcoming challenges of hepatitis C virus envelope glycoprotein production in mammalian cells. Methods Mol. Biol. 1911, 305–316 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, D. & Piszczek, G. Standard protocol for mass photometry experiments. Eur. Biophys. J. 50, 403–409 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cardone, G., Heymann, J. B. & Steven, A. C. One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. J. Struct. Biol. 184, 226–236 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jakobi, A. J., Wilmanns, M. & Sachse, C. Model-based local density sharpening of cryo-EM maps. eLife 6, e27131 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wessel, D. & Flugge, U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138, 141–143 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendes, M. L. et al. An integrated workflow for crosslinking mass spectrometry. Mol. Syst. Biol. 15, e8994 (2019).

  • Lenz, S. et al. Reliable identification of protein-protein interactions by crosslinking mass spectrometry. Nat. Commun. 12, 3564 (2021).

  • Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • da Veiga Leprevost, F. et al. Philosopher: a versatile toolkit for shotgun proteomics data analysis. Nat. Methods 17, 869–870 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Intel reportedly plans to lay off over 21,000 employees

    Intel is set to cut over 21,000 people, or roughly 20% of its workforce, with…

    2 days ago

    8 Readers Share What They Love About Their Looks

    What do you like about the way you look? Last week, we asked that question,…

    2 days ago

    Healthcare Hacks That Could Save You Thousands on the Journey to FIRE

    Wealth and health are closely intertwined, especially here in the US, where the high cost…

    2 days ago

    We can build quantum computers using the rules of special relativity

    The odd effects of special relativity can be harnessed to build quantum computersYuichiro Chino/Getty Images…

    2 days ago

    One of the Best Puzzlers of 2025, The Art of Fauna, Receives Great Update for Earth Day

    It’s all about nature and is both simplistic and beautiful. Each puzzle is made from…

    2 days ago

    Social Security rule reversals, office closures, cost cuts: Here’s what’s happening now

    A Social Security “war room,” threats to shut the agency, worker buyouts and a restraining…

    2 days ago