Categories: NATURE

Structural basis of archaeal FttA-dependent transcription termination


  • Sanders, T. et al. FttA is a CPSF73 homologue that terminates transcription in Archaea. Nat. Microbiol. 5, 545–553 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yue, L. et al. The conserved ribonuclease aCPSF1 triggers genome-wide transcription termination of Archaea via a 3′-end cleavage mode. Nucleic Acids Res. 48, 9589–9605 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. aCPSF1 cooperates with terminator U-tract to dictate archaeal transcription termination efficacy. eLife 10, e70464 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phung, D. et al. Archaeal β-CASP ribonucleases of the aCPSF1 family are orthologs of the eukaryal CPSF-73 factor. Nucleic Acids Res. 41, 1091–1103 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishida, Y. et al. Crystal structure of an archaeal cleavage and polyadenylation specificity factor subunit from Pyrococcus horikoshii. Proteins 78, 2395–2398 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mir-Montazeri, B., Ammelburg, M., Forouzan, D., Lupas, A. & Hartmann, M. Crystal structure of a dimeric archaeal cleavage and polyadenylation specificity factor. J. Struct. Biol. 173, 191–195 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva, A. et al. Structure and activity of a novel archaeal beta-CASP protein with N-terminal KH domains. Structure 19, 622–632 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fianu, I. et al. Structural basis of Integrator-mediated transcription regulation. Science 374, 883–887 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, H. et al. Structural basis of INTAC-regulated transcription. Protein Cell 14, 698–702 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fianu, I. et al. Structural basis of Integrator-dependent RNA polymerase II termination. Nature 629, 219–227 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lykke-Andersen, S. et al. Integrator is a genome-wide attenuator of non-productive transcription. Mol. Cell 81, 514–529 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagner, E., Tong, L. & Adelman, K. Integrator is a global promoter-proximal termination complex. Mol. Cell 83, 416–427 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Y., Hamilton, K. & Tong, L. Recent molecular insights into canonical pre-mRNA 3′-end processing. Transcription 11, 83–96 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eaton, J. & West, S. Termination of transcription by RNA polymerase II. Trends Genet. 36, 664–675 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodriguez-Molina, J., West, S. & Passmore, L. Knowing when to stop: transcription termination on protein-coding genes by eukaryotic RNAPII. Mol. Cell 83, 404–415 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boreikaite, V. & Passmore, L. 3′-End processing of eukaryotic mRNA: machinery, regulation, and impact on gene expression. Ann. Rev. Biochem. 92, 199–225 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Werner, F. A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. J. Mol. Biol. 417, 13–27 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomar, S. & Artsimovitch, I. NusG–Spt5 proteins-universal tools for transcription modification and communication. Chem. Rev. 113, 8604–8619 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, A. & Chen, F. The pleiotropic roles of SPT5 in transcription. Transcription 13, 53–69 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molodtsov, V., Wang, C., Firlar, E., Kaelber, J. & Ebright, R. H. Structural basis of Rho-dependent transcription termination. Nature 614, 367–374 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, J. et al. Structural basis for transcript elongation control by NusG family universal regulators. Cell 173, 1650–1662 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delbeau, M. et al. Structural and functional basis of the universal transcription factor NusG pro-pausing activity in Mycobacterium tuberculosis. Mol. Cell 83, 1474–1488 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vishwakarma, R., Qayyum, M., Babitzke, P. & Murakami, K. Allosteric mechanism of transcription inhibition by NusG-dependent pausing of RNA polymerase. Proc. Natl Acad. Sci. USA 120, e2218516120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehara, H. et al. Structure of the complete elongation complex of RNA polymerase II with basal factors. Science 357, 921–924 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Structural basis of transcription–translation coupling. Science 369, 1359–1365 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molodtsov, V. et al. Structural basis of RfaH-mediated transcription–translation coupling. Nature Struct. Mol. Biol. https://doi.org/10.1038/s41594-024-01372-w (2024).

  • Sun, Y. et al. Structure of an active human histone pre-mRNA 3′-end processing machinery. Science 367, 700–703 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitelaw, E. & Proudfoot, N. Alpha-thalassaemia caused by a poly(A) site mutation reveals that transcriptional termination is linked to 3′ end processing in the human alpha 2 globin gene. EMBO J. 5, 2915–2922 (1986).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, M. et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432, 517–522 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • West, S., Gromak, N. & Proudfoot, N. Human 5′→3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432, 522–525 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, W. & Bentley, D. A ribonucleolytic rat torpedoes RNA polymerase II. Cell 119, 911–914 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tollervey, D. Termination by torpedo. Nature 432, 456–457 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baejen, C. et al. Genome-wide analysis of RNA polymerase II termination at protein-coding genes. Mol. Cell 66, 38–49.e6 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fong, N. et al. Effects of transcription elongation rate and Xrn2 exonuclease activity on RNA polymerase II termination suggest widespread kinetic competition. Mol. Cell 60, 256–267 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eaton, J. et al. Xrn2 accelerates termination by RNA polymerase II, which is underpinned by CPSF73 activity. Genes Dev. 32, 127–139 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cortazar, M. et al. Xrn2 substrate mapping identifies torpedo loading sites and extensive premature termination of RNA pol II transcription. Genes Dev. 36, 1062–1078 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, Y., Zhang, H. W., Wu, X. X. & Zhang, Y. Structural basis of exoribonuclease-mediated mRNA transcription termination. Nature 628, 887–893 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yanagisawa, T. et al. Structural basis of eukaryotic transcription termination by the Rat1 exonuclease complex. Preprint at bioRxiv https://doi.org/10.1101/2024.03.28.587100 (2024).

  • Larson, M., Greenleaf, W., Landick, R. & Block, S. Applied force reveals mechanistic and energetic details of transcription termination. Cell 132, 971–982 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santangelo, T. & Roberts, J. Forward translocation is the natural pathway of RNA release at an intrinsic terminator. Mol. Cell 14, 117–126 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. & Roberts, J. Role of DNA bubble rewinding in enzymatic transcription termination. Proc. Natl Acad. Sci. USA 103, 4870–4875 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ray-Soni, A., Bellecourt, M. & Landick, R. Mechanisms of bacterial transcription termination. Annu. Rev. Biochem. 85, 319–347 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roberts, J. Mechanisms of bacterial transcription termination. J. Mol. Biol. 431, 4030–4039 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Epshtein, V., Cardinale, C., Ruckenstein, A., Borukhov, S. & Nudler, E. An allosteric path to transcription termination. Mol. Cell 28, 991–1001 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Epshtein, V., Dutta, D., Wade, J. & Nudler, E. An allosteric mechanism of Rho-dependent transcription termination. Nature 463, 245–249 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Webster, M. et al. Structural basis of transcription–translation coupling and collision in bacteria. Science 369, 1355–1359 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blaha, G. & Wade, J. Transcription–translation coupling in bacteria. Annu. Rev. Genet. 56, 9.1–9.19 (2022).

    Article 

    Google Scholar
     

  • French, S., Santangelo, T., Beyer, A. & Reeve, J. Transcription and translation are coupled in Archaea. Mol. Biol. Evol. 24, 893–895 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weixlbaumer, A., Grunberger, F., Werner, F. & Grohmann, D. Coupling of transcription and translation in archaea: cues from the bacterial world. Front. Microbiol. 12, 661827 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grana, D., Gardella, T. & Susskind, M. The effects of mutations in the ant promoter of phage P22 depend on context. Genet. 120, 319–327 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Sambrook, J., Fritsch, E. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, 1989).

  • Punjani, A., Rubinstein, J., Fleet, D. & Brubaker, M. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. et al. UCSF chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jun, S.-H. et al. Direct binding of TFEα opens DNA binding cleft of RNA polymerase. Nat. Commun. 11, 6123 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, B. J. et al. RNA polymerase and transcription elongation factor Spt4/5 complex structure. Proc. Natl Acad. Sci. USA 108, 46–550 (2011).

    Article 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afonine, T., Headd, J., Terwilliger, T. & Adams, P. Computational Crystallography Newsletter 4, 43–44; https://phenix-online.org/phenixwebsite_static/mainsite/files/newsletter/CCN_2013_07.pdf (2013).

  • Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Qualcomm wins a legal battle over Arm chip licensing

    A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…

    1 day ago

    Three Comic/Movie/Band Reviews | Cup of Jo

    Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…

    1 day ago

    Actually, Flipping Properties Can Improve Housing Affordability—Here’s How

    15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…

    1 day ago

    Is solar geoengineering research having its moment?

    Particles in ship exhaust inadvertently cause cloud brightening – some geoengineering projects would try to…

    1 day ago

    5 Great Games to Put You in the Winter Mood

    The weather outside is frightful, but the iOS games are so delightful, let it play,…

    1 day ago

    Banner year for fixed-income funds leaves TCW and Western Asset behind

    A few flagship bond funds from some big-name Southern California-based firms saw outflows of more…

    2 days ago