Categories: NATURE

Softening of the optical phonon by reduced interatomic bonding strength without depolarization


  • Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhong, W., King-Smith, R. D. & Vanderbilt, D. Giant LO-TO splittings in perovskite ferroelectrics. Phys. Rev. Lett. 72, 3618–3621 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stengel, M. & Spaldin, N. A. Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679–682 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yim, K. et al. Novel high-κ dielectrics for next-generation electronic devices screened by automated ab initio calculations. NPG Asia Mater. 7, e190–e190 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Cheema, S. S. et al. Emergent ferroelectricity in subnanometer binary oxide films on silicon. Science 376, 648–652 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheema, S. S. et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 580, 478–482 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bousquet, E., Spaldin, N. A. & Ghosez, P. Strain-induced ferroelectricity in simple rocksalt binary oxides. Phys. Rev. Lett. 104, 037601 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, C. W. et al. Orbitally driven giant phonon anharmonicity in SnSe. Nat. Phys. 11, 1063–1069 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Robertson, J. High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 28, 265–291 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Delaire, O. et al. Giant anharmonic phonon scattering in PbTe. Nat. Mater. 10, 614–619 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, S. et al. Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 5, 3525 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ghosez, P., Michenaud, J.-P. & Gonze, X. Dynamical atomic charges: the case of ABO3 compounds. Phys. Rev. B 58, 6224–6240 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cochran, W. Crystal stability and the theory of ferroelectricity. Phys. Rev. Lett. 3, 412–414 (1959).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Axe, J. D. Apparent ionic charges and vibrational eigenmodes of BaTiO3 and other perovskites. Phys. Rev. 157, 429–435 (1967).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sirenko, A. A. et al. Soft-mode hardening in SrTiO3 thin films. Nature 404, 373–376 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, S. et al. Highly enhanced ferroelectricity in HfO2-based ferroelectric thin film by light ion bombardment. Science 376, 731–738 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalinin, S. V., Kim, Y., Fong, D. D. & Morozovska, A. N. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures. Rep. Prog. Phys. 81, 036502 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lee, D. et al. Emergence of room-temperature ferroelectricity at reduced dimensions. Science 349, 1314–1317 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahn, C. H., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Noheda, B. & Íñiguez, J. A key piece of the ferroelectric hafnia puzzle. Science 369, 1300–1301 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Warusawithana, M. P. et al. A ferroelectric oxide made directly on silicon. Science 324, 367–370 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheema, S. S. et al. Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature 604, 65–71 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrison, W. A. Elementary Electronic Structure (World Scientific, 1999).

  • Rabe, K. M., Ahn, C. H. & Triscone, J. Physics of Ferroelectrics: A Modern Perspective (Springer, 2007).

  • Pauling, L. The size of ions and the structure of ionic crystals. J. Am. Chem. Soc. 49, 765–790 (1927).

    Article 
    CAS 

    Google Scholar
     

  • Shannon, R. D. & Prewitt, C. T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B Struct. Sci. 25, 925–946 (1969).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hatt, A. J., Spaldin, N. A. & Ederer, C. Strain-induced isosymmetric phase transition in BiFeO3. Phys. Rev. B 81, 054109 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Iwazaki, Y., Suzuki, T., Mizuno, Y. & Tsuneyuki, S. Doping-induced phase transitions in ferroelectric BaTiO3 from first-principles calculations. Phys. Rev. B 86, 214103 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Moriwake, H. et al. The electric field induced ferroelectric phase transition of AgNbO3. J. Appl. Phys. 119, 064102 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Van Aken, B. B., Palstra, T. T. M., Filippetti, A. & Spaldin, N. A. The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3, 164–170 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Greaves, G. N., Greer, A. L., Lakes, R. S. & Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Reyes-Lillo, S. E., Garrity, K. F. & Rabe, K. M. Antiferroelectricity in thin-film ZrO2 from first principles. Phys. Rev. B 90, 140103 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Raeliarijaona, A. & Cohen, R. E. Hafnia HfO2 is a proper ferroelectric. Phys. Rev. B 108, 094109 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, H.-J. et al. Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science 369, 1343–1347 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, S., Zhang, J. & Rappe, A. M. Strain-induced antipolar phase in hafnia stabilizes robust thin-film ferroelectricity. Sci. Adv. 8, eadd5953 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ceperley, D. M. & Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bernardini, F. & Fiorentini, V. Electronic dielectric constants of insulators calculated by the polarization method. Phys. Rev. B 58, 15292–15295 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baroni, S., Giannozzi, P. & Testa, A. Green’s-function approach to linear response in solids. Phys. Rev. Lett. 58, 1861–1864 (1987).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonze, X. First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm. Phys. Rev. B 55, 10337–10354 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10368 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Giannozzi, P., de Gironcoli, S., Pavone, P. & Baroni, S. Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B 43, 7231–7242 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Waghmare, U. V. & Rabe, K. M. Ab initio statistical mechanics of the ferroelectric phase transition in PbTiO3. Phys. Rev. B 55, 6161–6173 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Esfarjani, K. & Stokes, H. T. Method to extract anharmonic force constants from first principles calculations. Phys. Rev. B 77, 144112 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Z.-H., Zhang, X. & Wei, S.-H. Origin of structural anomaly in cuprous halides. J. Phys. Chem. Lett. 13, 11438–11443 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Liu, M., Wang, J., Shimada, T. & Kitamura, T. Strain tunable ferroelectric and dielectric properties of BaZrO3. J. Appl. Phys. 115, 224107 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Toulouse, C. et al. Lattice dynamics and Raman spectrum of BaZrO3 single crystals. Phys. Rev. B 100, 134102 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xie, L. & Zhu, J. The electronic structures, Born effective charges, and interatomic force constants in BaMO3 (M = Ti, Zr, Hf, Sn): a comparative first‐principles study. J. Am. Ceram. Soc. 95, 3597–3604 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y., Wang, J., Sahoo, M. P. K., Shimada, T. & Kitamura, T. Strain-induced ferroelectricity and lattice coupling in BaSnO3 and SrSnO3. Phys. Chem. Chem. Phys. 19, 26047–26055 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stengel, M., Vanderbilt, D. & Spaldin, N. A. Enhancement of ferroelectricity at metal–oxide interfaces. Nat. Mater. 8, 392–397 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Li, G.-P., Shimada, T., Wang, J. & Kitamura, T. Disappearance of ferroelectric critical thickness in epitaxial ultrathin BaZrO3 films. Phys. Rev. B 90, 184107 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, S. et al. Vibrational fingerprints of ferroelectric HfO2. npj Quantum Mater. 7, 32 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sternik, M. & Parlinski, K. Lattice vibrations in cubic, tetragonal, and monoclinic phases of ZrO2. J. Chem. Phys. 122, 064707 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, R. et al. Data for ‘Softening of the optical phonon by reduced interatomic bonding strength without depolarization’. Figshare https://doi.org/10.6084/m9.figshare.26826472 (2024).

  • Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Rondinelli, J. M., Eidelson, A. S. & Spaldin, N. A. Non-d0 Mn-driven ferroelectricity in antiferromagnetic BaMnO3. Phys. Rev. B 79, 205119 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Qin, G. et al. Resonant bonding driven giant phonon anharmonicity and low thermal conductivity of phosphorene. Phys. Rev. B 94, 165445 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ghosez, P., Cockayne, E., Waghmare, U. V. & Rabe, K. M. Lattice dynamics of BaTiO3, PbTiO3, and PbZrO3: a comparative first-principles study. Phys. Rev. B 60, 836–843 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Crema, A. P. S. et al. Ferroelectric orthorhombic ZrO2 thin films achieved through nanosecond laser annealing. Adv. Sci. 10, 2207390 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Huang, K.-W. et al. Sub-7-nm textured ZrO2 with giant ferroelectricity. Acta Mater. 205, 116536 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chae, K. et al. Local epitaxial templating effects in ferroelectric and antiferroelectric ZrO2. ACS Appl. Mater. Interfaces 14, 36771–36780 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, B., Lomenzo, P. D., Kersch, A., Mikolajick, T. & Schroeder, U. Influence of Si-doping on 45 nm thick ferroelectric ZrO2 films. ACS Appl. Electron. Mater. 4, 3648–3654 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Starschich, S., Schenk, T., Schroeder, U. & Boettger, U. Ferroelectric and piezoelectric properties of Hf1-xZrxO2 and pure ZrO2 films. Appl. Phys. Lett. 110, 182905 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wu, Y. et al. Unconventional polarization-switching mechanism in (Hf,Zr)O2 ferroelectrics and its implications. Phys. Rev. Lett. 131, 226802 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    The FTC orders Marriott and Starwood to beef up their data security

    The Federal Trade Commission announced on Friday it finalized an order (pdf) requiring Marriott International…

    37 mins ago

    Have a Cozy Weekend. | Cup of Jo

    What are you up to this weekend? New York has gotten cold! Last night, the…

    2 hours ago

    Redfin’s 2025 Housing Market Predictions

    15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…

    2 hours ago

    Forget aesthetics, the reason to look after our skin should be health

    Dr Jeremy Burgess/Science Photo Library Our skin isn’t just our biggest organ, it is also…

    3 hours ago

    Apple Unveils 2024 App Store Award Winners

    As we near the end of 2024, Apple has just unveiled its list of the…

    3 hours ago

    Stock market will find it hard to rally unless the dollar and bonds calm down

    Stocks rose to kick off a holiday-shortened week on Monday, but the bond market and…

    3 hours ago