Categories: NATURE

Single-neuron representations of odours in the human brain


  • Gottfried, J. A. Central mechanisms of odour object perception. Nat. Rev. Neurosci. 11, 628–641 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGann, J. P. Poor human olfaction is a 19th-century myth. Science 356, eaam7263 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murthy, V. N. Olfactory maps in the brain. Annu. Rev. Neurosci. 34, 233–258 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, D. A., Chapuis, J. & Sullivan, R. M. in Handbook of Olfaction and Gustation Ch. 10 (ed. Doty, R.) 209–224 (John Wiley & Sons, 2015); https://doi.org/10.1002/9781118971758.ch10.

  • Gretenkord, S. et al. Coordinated electrical activity in the olfactory bulb gates the oscillatory entrainment of entorhinal networks in neonatal mice. PLOS Biol. 17, e2006994 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sosulski, D. L., Bloom, M. L., Cutforth, T., Axel, R. & Datta, S. R. Distinct representations of olfactory information in different cortical centres. Nature 472, 213–216 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Echevarria-Cooper, S. L. et al. Mapping the microstructure and striae of the human olfactory tract with diffusion MRI. J. Neurosci. 42, 58–68 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bekkers, J. M. & Suzuki, N. Neurons and circuits for odor processing in the piriform cortex. Trends Neurosci. 36, 429–438 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stettler, D. D. & Axel, R. Representations of odor in the piriform cortex. Neuron 63, 854–864 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Howard, J. D., Plailly, J., Grueschow, M., Haynes, J.-D. & Gottfried, J. A. Odor quality coding and categorization in human posterior piriform cortex. Nat. Neurosci. 12, 932–938 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gottfried, J. A., Winston, J. S. & Dolan, R. J. Dissociable codes of odor quality and odorant structure in human piriform cortex. Neuron 49, 467–479 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poellinger, A. et al. Activation and habituation in olfaction—an fMRI study. NeuroImage 13, 547–560 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, H. et al. Theta oscillations rapidly convey odor-specific content in human piriform cortex. Neuron 94, 207–219 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poo, C., Agarwal, G., Bonacchi, N. & Mainen, Z. F. Spatial maps in piriform cortex during olfactory navigation. Nature 601, 595–599 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Poo, C. & Isaacson, J. S. Odor representations in olfactory cortex: “sparse” coding, global inhibition, and oscillations. Neuron 62, 850–861 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan, C. & Luo, M. Diverse patterns of odor representation by neurons in the anterior piriform cortex of awake mice. J. Neurosci. 30, 16662–16672 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roland, B., Deneux, T., Franks, K. M., Bathellier, B. & Fleischmann, A. Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex. eLife 6, e26337 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blazing, R. M. & Franks, K. M. Odor coding in piriform cortex: mechanistic insights into distributed coding. Curr. Opin. Neurobiol. 64, 96–102 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pashkovski, S. L. et al. Structure and flexibility in cortical representations of odour space. Nature 583, 253–258 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haddad, R. et al. Olfactory cortical neurons read out a relative time code in the olfactory bulb. Nat. Neurosci. 16, 949–957 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, W. & Wilson, D. A. Odor-evoked activity in the mouse lateral entorhinal cortex. Neuroscience 223, 12–20 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cain, D. P. & Bindra, D. Responses of amygdala single units to odors in the rat. Exp. Neurol. 35, 98–110 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kupers, R. et al. Neural correlates of olfactory processing in congenital blindness. Neuropsychologia 49, 2037–2044 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kjelvik, G., Evensmoen, H. R., Brezova, V. & Håberg, A. K. The human brain representation of odor identification. J. Neurophysiol. 108, 645–657 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Bitterman, Y., Mukamel, R., Malach, R., Fried, I. & Nelken, I. Ultra-fine frequency tuning revealed in single neurons of human auditory cortex. Nature 451, 197–201 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reber, T. P. et al. Representation of abstract semantic knowledge in populations of human single neurons in the medial temporal lobe. PLOS Biol. 17, e3000290 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutishauser, U., Reddy, L., Mormann, F. & Sarnthein, J. The architecture of human memory: insights from human single-neuron recordings. J. Neurosci. 41, 883–890 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halgren, E., Babb, T. L., Rausch, R. & Crandall, P. H. Neurons in the human basolateral amygdala and hippocampal formation do not respond to odors. Neurosci. Lett. 4, 331–335 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fontanini, A., Spano, P. & Bower, J. M. Ketamine-xylazine-induced slow (<1.5 Hz) oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration. J. Neurosci. 23, 7993–8001 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sobel, N. et al. Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature 392, 282–286 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zelano, C. et al. Nasal respiration entrains human limbic oscillations and modulates cognitive function. J. Neurosci. 36, 12448–12467 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyers, E. The neural decoding toolbox. Front. Neuroinformatics 7, 8 (2013).

  • Vinje, W. E. & Gallant, J. L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287, 1273–1276 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pedreira, C., Martinez, J., Ison, M. J. & Quian Quiroga, R. How many neurons can we see with current spike sorting algorithms? J. Neurosci. Methods 211, 58–65 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindquist, K. A., Satpute, A. B., Wager, T. D., Weber, J. & Barrett, L. F. The brain basis of positive and negative affect: evidence from a meta-analysis of the human neuroimaging literature. Cereb. Cortex 26, 1910–1922 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Winston, J. S., Gottfried, J. A., Kilner, J. M. & Dolan, R. J. Integrated neural representations of odor intensity and affective valence in human amygdala. J. Neurosci. 25, 8903–8907 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pignatelli, M. & Beyeler, A. Valence coding in amygdala circuits. Curr. Opin. Behav. Sci. 26, 97–106 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Toet, A. et al. The relation between valence and arousal in subjective odor experience. Chemosens. Percept. 13, 141–151 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Eichenbaum, H., Morton, T. H., Potter, H. & Corkin, S. Selective olfactory deficits in case H.M. Brain 106, 459–472 (1983).

    Article 
    PubMed 

    Google Scholar
     

  • Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Quiroga, R. Q., Kraskov, A., Koch, C. & Fried, I. Explicit encoding of multimodal percepts by single neurons in the human brain. Curr. Biol. 19, 1308–1313 (2009).

    Article 
    PubMed Central 

    Google Scholar
     

  • Mignot, C., Schunke, A., Sinding, C. & Hummel, T. Olfactory adaptation: recordings from the human olfactory epithelium. Eur. Arch. Otorhinolaryngol. 279, 3503–3510 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wilson, D. A. Habituation of odor responses in the rat anterior piriform cortex. J. Neurophysiol. 79, 1425–1440 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sobel, N. et al. Time course of odorant-induced activation in the human primary olfactory cortex. J. Neurophysiol. 83, 537–551 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pedreira, C. et al. Responses of human medial temporal lobe neurons are modulated by stimulus repetition. J. Neurophysiol. 103, 97–107 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Jacobson, G. A., Rupprecht, P. & Friedrich, R. W. Experience-dependent plasticity of odor representations in the telencephalon of zebrafish. Curr. Biol. 28, 1–14 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franks, K. M. et al. Recurrent circuitry dynamically shapes the activation of piriform cortex. Neuron 72, 49–56 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iravani, B., Arshamian, A., Ohla, K., Wilson, D. A. & Lundström, J. N. Non-invasive recording from the human olfactory bulb. Nat. Commun. 11, 648 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garavan, H., Pendergrass, J. C., Ross, T. J., Stein, E. A. & Risinger, R. C. Amygdala response to both positively and negatively valenced stimuli. NeuroReport 12, 2779 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, J., Zelano, C., Gottfried, J. A. & Mohanty, A. Human amygdala represents the complete spectrum of subjective valence. J. Neurosci. 35, 15145–15156 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, A. K. et al. Dissociated neural representations of intensity and valence in human olfaction. Nat. Neurosci. 6, 196–202 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doty, R. L. Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? Lancet Neurol. 16, 478–488 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Poo, C. & Isaacson, J. S. A major role for intracortical circuits in the strength and tuning of odor-evoked excitation in olfactory cortex. Neuron 72, 41–48 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mandairon, N. et al. Context-driven activation of odor representations in the absence of olfactory stimuli in the olfactory bulb and piriform cortex. Front. Behav. Neurosci. 8, 138 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schulze, P., Bestgen, A.-K., Lech, R. K., Kuchinke, L. & Suchan, B. Preprocessing of emotional visual information in the human piriform cortex. Sci. Rep. 7, 9191 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Djordjevic, J. et al. A rose by any other name: would it smell as sweet? J. Neurophysiol. 99, 386–393 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Bensafi, M. et al. Olfactomotor activity during imagery mimics that during perception. Nat. Neurosci. 6, 1142–1144 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herz, R. S. Verbal coding in olfactory versus nonolfactory cognition. Mem. Cognit. 28, 957–964 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Young, B. D. Olfactory imagery: is exactly what it smells like. Philos. Stud. 177, 3303–3327 (2020).

    Article 

    Google Scholar
     

  • Topalovic, U. et al. A wearable platform for closed-loop stimulation and recording of single-neuron and local field potential activity in freely moving humans. Nat. Neurosci. 26, 517–527 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tay, A. S.-M. S., Caravan, B. & Mamelak, A. N. in Intracranial EEG: A Guide for Cognitive Neuroscientists (ed. Axmacher, N.) 671–682 (Springer, 2023); https://doi.org/10.1007/978-3-031-20910-9_42.

  • Niediek, J., Boström, J., Elger, C. E. & Mormann, F. Reliable analysis of single-unit recordings from the human brain under noisy conditions: tracking neurons over hours. PLoS ONE 11, e0166598 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dehnen, G. et al. Duplicate detection of spike events: a relevant problem in human single-unit recordings. Brain Sci. 11, 761 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, T. S. et al. LeGUI: a fast and accurate graphical user interface for automated detection and anatomical localization of intracranial electrodes. Front. Neurosci. 15, 769872 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Noto, T., Zhou, G., Schuele, S., Templer, J. & Zelano, C. Automated analysis of breathing waveforms using BreathMetrics: a respiratory signal processing toolbox. Chem. Senses 43, 583–597 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tiihonen, M., Jacobsen, T., Haumann, N. T., Saarikallio, S. & Brattico, E. I know what I like when I see it: likability is distinct from pleasantness since early stages of multimodal emotion evaluation. PLoS ONE 17, e0274556 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shuman, V., Sander, D. & Scherer, K. Levels of Valence. Front. Psychol. 4, (2013).

  • Brainard, D. H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kleiner, M. et al. What’s new in psychtoolbox-3. Perception 36, 1–16 (2007).


    Google Scholar
     

  • Mormann, F. et al. Latency and selectivity of single neurons indicate hierarchical processing in the human medial temporal lobe. J. Neurosci. 28, 8865–8872 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reber, T. P. et al. Single-neuron mechanisms of neural adaptation in the human temporal lobe. Nat. Commun. 14, 2496 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rolls, E. T. & Tovee, M. J. Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. J. Neurophysiol. 73, 713–726 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Treves, A. & Rolls, E. T. What determines the capacity of autoassociative memories in the brain? Netw. Comput. Neural Syst. 2, 371–397 (1991).

    Article 

    Google Scholar
     

  • Aarts, E., Verhage, M., Veenvliet, J. V., Dolan, C. V. & van der Sluis, S. A solution to dependency: using multilevel analysis to accommodate nested data. Nat. Neurosci. 17, 491–496 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 255–278 (2013).

    Article 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Mumps is rising in some nations — but a fresh dose of vaccine might help

    A third dose of the mumps vaccine, if given early during an outbreak, might reduce…

    10 hours ago

    Here’s a bunch of bananas shit Trump said today about breaking up Google

    Yeah, look, Google’s got a lot of power. They’re very bad to me. Very, very…

    10 hours ago

    Efficient and Eco-Friendly Boat Paint & Antifouling Removal with Laser Cleaning

    Maintaining the exterior of a boat, especially removing old paint and antifouling layers, is essential…

    11 hours ago

    The Most Romantic Place I’ve Never Been

    I couldn’t describe, exactly, the layout of the trailer my family moved into when we…

    12 hours ago

    Should You Keep or Sell Your House? Use This Tool

    Should you sell your house or keep it as a rental property in 2024? What…

    12 hours ago

    First breathtaking images from Euclid telescope’s map of the universe

    The interaction between two distant galaxies, captured by EuclidESA A mosaic of images from the…

    12 hours ago