Categories: NATURE

Short-term post-fast refeeding enhances intestinal stemness via polyamines


  • Cheng, C. W. & Yilmaz Ö, H. 100 Years of exploiting diet and nutrition for tissue regeneration. Cell Stem Cell 28, 370–373 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nencioni, A., Caffa, I., Cortellino, S. & Longo, V. D. Fasting and cancer: molecular mechanisms and clinical application. Nat. Rev. Cancer 18, 707–719 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, C. W. et al. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell 14, 810–823 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Longo, V. D. & Mattson, M. P. Fasting: molecular mechanisms and clinical applications. Cell Metab. 19, 181–192 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weindruch, R., Walford, R. L., Fligiel, S. & Guthrie, D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J. Nutr. 116, 641–654 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • Mattison, J. A. et al. Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun. 8, 14063 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calibasi-Kocal, G. et al. Nutritional control of intestinal stem cells in homeostasis and tumorigenesis. Trends Endocrinol. Metab. 32, 20–35 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Cerletti, M., Jang, Y. C., Finley, L. W., Haigis, M. C. & Wagers, A. J. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 10, 515–519 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mihaylova, M. M. et al. Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell 22, 769–778.e4 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yilmaz Ö, H. et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486, 490–495 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vernieri, C. et al. Fasting-mimicking diet is safe and reshapes metabolism and antitumor immunity in cancer patients. Cancer Discov. https://doi.org/10.1158/2159-8290.Cd-21-0030 (2021).

  • Salvadori, G. et al. Fasting-mimicking diet blocks triple-negative breast cancer and cancer stem cell escape. Cell Metab. 33, 2247–2259.e6 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alonso, S. & Yilmaz Ö, H. Nutritional regulation of intestinal stem cells. Annu. Rev. Nutr. 38, 273–301 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Beumer, J. & Clevers, H. Cell fate specification and differentiation in the adult mammalian intestine. Nat. Rev. Mol. Cell Biol. 22, 39–53 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Goto, N. et al. Lymphatics and fibroblasts support intestinal stem cells in homeostasis and injury. Cell Stem Cell 29, 1246–1261.e6 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niec, R. E. et al. Lymphatics act as a signaling hub to regulate intestinal stem cell activity. Cell Stem Cell 29, 1067–1082.e18 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palikuqi, B. et al. Lymphangiocrine signals are required for proper intestinal repair after cytotoxic injury. Cell Stem Cell 29, 1262–1272.e5 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gehart, H. & Clevers, H. Tales from the crypt: new insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 16, 19–34 (2019).

    PubMed 

    Google Scholar
     

  • Cheng, C. W. et al. Ketone body signaling mediates intestinal stem cell homeostasis and adaptation to diet. Cell 178, 1115–1131.e15 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beyaz, S. et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53–58 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Igarashi, M. & Guarente, L. mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction. Cell 166, 436–450 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Zismanov, V. et al. Phosphorylation of eIF2α is a translational control mechanism regulating muscle stem cell quiescence and self-renewal. Cell Stem Cell 18, 79–90 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Llorens-Bobadilla, E. et al. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17, 329–340 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Signer, R. A., Magee, J. A., Salic, A. & Morrison, S. J. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49–54 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morral, C. et al. Zonation of ribosomal DNA transcription defines a stem cell hierarchy in colorectal cancer. Cell Stem Cell 26, 845–861.e12 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benitah, S. A. & Welz, P. S. Circadian regulation of adult stem cell homeostasis and aging. Cell Stem Cell 26, 817–831 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manning, B. D. & Toker, A. AKT/PKB signaling: navigating the network. Cell 169, 381–405 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulvihill, M. J. et al. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor. Future Med. Chem. 1, 1153–1171 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Burger, M. T. et al. Identification of NVP-BKM120 as a potent, selective, orally bioavailable class I PI3 kinase inhibitor for treating cancer. ACS Med. Chem. Lett. 2, 774–779 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biton, M. et al. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 175, 1307–1320.e22 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ginguay, A., Cynober, L., Curis, E. & Nicolis, I. Ornithine aminotransferase, an important glutamate-metabolizing enzyme at the crossroads of multiple metabolic pathways. Biology 6, 18 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daune, G., Gerhart, F. & Seiler, N. 5-Fluoromethylornithine, an irreversible and specific inhibitor of l-ornithine:2-oxo-acid aminotransferase. Biochem. J. 253, 481–488 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poulin, R., Lu, L., Ackermann, B., Bey, P. & Pegg, A. E. Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by α-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding sites. J. Biol. Chem. 267, 150–158 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Puleston, D. J. et al. Polyamine metabolism is a central determinant of helper T cell lineage fidelity. Cell 184, 4186–4202.e20 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, M. H. & Wolff, E. C. Hypusine, a polyamine-derived amino acid critical for eukaryotic translation. J. Biol. Chem. 293, 18710–18718 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puleston, D. J. et al. Polyamines and eIF5A hypusination modulate mitochondrial respiration and macrophage activation. Cell Metab. 30, 352–363.e8 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zabala-Letona, A. et al. mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer. Nature 547, 109–113 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mandal, S., Mandal, A., Johansson, H. E., Orjalo, A. V. & Park, M. H. Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells. Proc. Natl Acad. Sci. USA 110, 2169–2174 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbruzzese, A., Park, M. H. & Folk, J. E. Deoxyhypusine hydroxylase from rat testis. Partial purification and characterization. J. Biol. Chem. 261, 3085–3089 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • Gobert, A. P. et al. Hypusination orchestrates the antimicrobial response of macrophages. Cell Rep. 33, 108510 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruens, L. et al. Calorie restriction increases the number of competing stem cells and decreases mutation retention in the intestine. Cell Rep. 32, 107937 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span — from yeast to humans. Science 328, 321–326 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mai, V. et al. Calorie restriction and diet composition modulate spontaneous intestinal tumorigenesis in Apc(Min) mice through different mechanisms. Cancer Res. 63, 1752–1755 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Faller, W. J. et al. mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature 517, 497–500 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Erdman, S. H. et al. APC-dependent changes in expression of genes influencing polyamine metabolism, and consequences for gastrointestinal carcinogenesis, in the Min mouse. Carcinogenesis 20, 1709–1713 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Oliver, E. R., Saunders, T. L., Tarlé, S. A. & Glaser, T. Ribosomal protein L24 defect in belly spot and tail (Bst), a mouse Minute. Development 131, 3907–3920 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Knight, J. R. et al. Rpl24(Bst) mutation suppresses colorectal cancer by promoting eEF2 phosphorylation via eEF2K. eLife 10, e69729 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagai, M. et al. Fasting–refeeding impacts immune cell dynamics and mucosal immune responses. Cell 178, 1072–1087.e14 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Napolitano, G. et al. mTOR-dependent phosphorylation controls TFEB nuclear export. Nat. Commun. 9, 3312 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tinkum, K. L. et al. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival. Proc. Natl Acad. Sci. USA 112, E7148–E7154 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, T. H., Escudero, S. & Shivdasani, R. A. Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells. Proc. Natl Acad. Sci. USA 109, 3932–3937 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zoumas-Morse, C. et al. Development of a polyamine database for assessing dietary intake. J. Am. Diet Assoc. 107, 1024–1027 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pegg, A. E. Functions of polyamines in mammals. J. Biol. Chem. 291, 14904–14912 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allmeroth, K. et al. N1-acetylspermidine is a determinant of hair follicle stem cell fate. J. Cell Sci. 134, jcs252767 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fritsch, S. D. et al. Metabolic support by macrophages sustains colonic epithelial homeostasis. Cell Metab. 35, 1931–1943.e8 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Brandhorst, S. et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 22, 86–99 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • el Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39, 186–193 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Colnot, S. et al. Colorectal cancers in a new mouse model of familial adenomatous polyposis: influence of genetic and environmental modifiers. Lab Invest. 84, 1619–1630 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ootani, A. et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med. 15, 701–706 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuhrer, T., Heer, D., Begemann, B. & Zamboni, N. High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection-time-of-flight mass spectrometry. Anal. Chem. 83, 7074–7080 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Sellick, C. A., Hansen, R., Stephens, G. M., Goodacre, R. & Dickson, A. J. Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat. Protoc. 6, 1241–1249 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Google has given Anthropic more funding than previously known, show new filings

    Anthropic, a San Francisco startup often cast as an independent player in the AI race,…

    18 hours ago

    My Messy Road to Not Drinking

    I had stints where I didn’t drink, but that dry January felt different. I tucked…

    19 hours ago

    How the Top 1% Invest (and How Do YOU Compare?)

    How do the top 1% of Americans invest their money, and how do your investments…

    19 hours ago

    Saturn has 128 new moons – more than the rest of the planets combined

    Saturn now has a total of 274 moonsNASA/JPL/Space Science Institute A further 128 moons have…

    20 hours ago

    Six New Games Land on Apple Arcade in April

    Katamari Damacy Rolling LIVE is an Apple Arcade exclusive and sees you rolling up objects…

    20 hours ago

    Trump retreats from 50% tariffs on Canadian metals. Here’s what comes next.

    President Donald Trump on Tuesday backed off a 50% tariff on imports of Canadian steel…

    20 hours ago