Categories: NATURE

Plasticity in single-crystalline Mg3Bi2 thermoelectric material


  • Gelbstein, Y. et al. Physical, mechanical, and structural properties of highly efficient nanostructured n- and p-silicides for practical thermoelectric applications. J. Electron. Mater. 43, 1703–1711 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Gahlawat, S., White, K., Ren, Z., Kogo, Y. & Iida, T. in Advanced Thermoelectrics, Materials, Contacts, Devices, and Systems (eds Zhifeng, R. et al.) 555–602 (CRC Press, 2017).

  • Yang, Q. et al. Flexible thermoelectrics based on ductile semiconductors. Science 377, 854–858 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, H., Wang, Y., Fu, C., Zhao, X. & Zhu, T. Achieving metal-like malleability and ductility in Ag2Te1−xSx inorganic thermoelectric semiconductors with high mobility. The Innovation 3, 100341 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peter, Y. & Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties (Springer Science & Business Media, 2010).

  • Shi, X. et al. Room-temperature ductile inorganic semiconductor. Nat. Mater. 17, 421–426 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oshima, Y., Nakamura, A. & Matsunaga, K. Extraordinary plasticity of an inorganic semiconductor in darkness. Science 360, 772–774 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, T.-R. et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science 369, 542–545 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Z. et al. High-throughput screening of 2D van der Waals crystals with plastic deformability. Nat. Commun. 13, 7491 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, S. et al. Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5, eaaw0536 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao, J., Chen, G. & Ren, Z. Thermoelectric cooling materials. Nat. Mater. 20, 454–461 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, J., Guo, Z. & Sui, M. Slip system determination of dislocations in a-Ti during in situ TEM tensile deformation. Acta Metall. Sin. 52, 71–77 (2016).


    Google Scholar
     

  • Partridge, P. The crystallography and deformation modes of hexagonal close-packed metals. Metall. Rev. 12, 169–194 (1967).

    Article 
    CAS 

    Google Scholar
     

  • Chin, G. Y. & Mammel, W. L. Competition among basal, prism, and pyramidal slip modes in hcp metals. Metall. Trans. 1, 357–361 (1970).

    Article 
    CAS 

    Google Scholar
     

  • Yoo, M. H. Slip twinning, and fracture in hexagonal close-packed metals. Metall. Mater. Trans. 12, 409–418 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Li, G. et al. Ductile deformation mechanism in semiconductor Ag2S. npj Comput. Mater. 4, 44 (2018).

    Article 

    Google Scholar
     

  • Ando, S. & Tonda, H. Non-basal slips in magnesium and magnesium-lithium alloy single crystals. Mater. Sci. Forum 350–351, 43–48 (2000).

  • Agnew, S., Yoo, M. & Tome, C. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater. 49, 4277–4289 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Chino, Y., Kado, M. & Mabuchi, M. Compressive deformation behavior at room temperature-773 K in Mg-0.2 mass% (0.035 at.%) Ce alloy. Acta Mater. 56, 387–394 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Al-Samman, T. & Li, X. Sheet texture modification in magnesium-based alloys by selective rare earth alloying. Mater. Sci. Eng. A 528, 3809–3822 (2011).

    Article 

    Google Scholar
     

  • Sandlöbes, S. et al. Ductility improvement of Mg alloys by solid solution: ab initio modeling, synthesis and mechanical properties. Acta Mater. 70, 92–104 (2014).

    Article 

    Google Scholar
     

  • Atomic Reference Data for Electronic Structure Calculations, Atomic Total Energies and Eigenvalues (NIST, 2015); https://www.nist.gov/pml/atomic-reference-data-electronic-structure-calculations/atomic-reference-data-electronic-7.

  • Schäfer, H., Eisenmann, B. & Müller, W. Zintl phases: transitions between metallic and ionic bonding. Angew. Chem. Int. Ed. 12, 694–712 (1973).

    Article 

    Google Scholar
     

  • Zhang, J. et al. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nat. Commun. 8, 13901 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao, J. et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495–498 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goto, Y. et al. Band anisotropy generates axis-dependent conduction polarity of Mg3Sb2 and Mg3Bi2. Chem. Mater. 36, 2018–2026 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Loebner, E. E. Thermoelectric power of carbons and graphite. Phys. Rev. 84, 153–153 (1951).

    Article 

    Google Scholar
     

  • Saunders, G. A., Miziumski, C., Cooper, G. S. & Lawson, A. The Seebeck coefficients of antimony and arsenic single crystals. J. Phys. Chem. Solids 26, 1299–1303 (1965).

    Article 
    CAS 

    Google Scholar
     

  • Shang, H. et al. N-type Mg3Sb2−xBix with improved thermal stability for thermoelectric power generation. Acta Mater. 201, 572–579 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, A. et al. Chemical stability and degradation mechanism of Mg3Sb2−xBix thermoelectrics towards room-temperature applications. Acta Mater. 239, 118301 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, X. et al. Revealing the chemical instability of Mg3Sb2−xBix-based thermoelectric materials. ACS Appl. Mater. Interfaces 15, 50216–50224 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamaki, H., Sato, H. K. & Kanno, T. Isotropic conduction network and defect chemistry in Mg3Sb2-based layered Zintl compounds with high thermoelectric performance. Adv. Mater. 28, 10182–10187 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohno, S. et al. Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule 2, 141–154 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, H., Yang, Z.-H., Perdew, J. P. & Sun, J. Versatile van der Waals density functional based on a meta-generalized gradient approximation. Phys. Rev. X 6, 041005 (2016).


    Google Scholar
     

  • Dronskowski, R. & Blöchl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 115, 5461–5466 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical‐bonding analysis in solids. J. Comput. Chem. 34, 2557–2567 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37, 1030–1035 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran, F. & Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Singh, D. J. Electronic structure calculations with the Tran–Blaha modified Becke–Johnson density functional. Phys. Rev. B 82, 205102 (2010).

    Article 

    Google Scholar
     

  • Yates, J. R., Wang, X., Vanderbilt, D. & Souza, I. Spectral and Fermi surface properties from Wannier interpolation. Phys. Rev. B 75, 195121 (2007).

    Article 

    Google Scholar
     

  • Mostofi, A. A. et al. Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Mostofi, A. A. et al. An updated version of Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kokalj, A. XCrySDen—a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 17, 176–179 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, Y. et al. High-throughput deformation potential and electrical transport calculations. npj Comput. Mater. 9, 190 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Madsen, G. K., Carrete, J. & Verstraete, M. J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 231, 140–145 (2018).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Note-Taking App Craft Updated With New Task Management Features and More

    The standout feature is the ability to create and stricter your ideas into a beautiful…

    3 hours ago

    Monster Energy’s Ayumu Hirano Claims Victory in Men’s Snowboard Halfpipe at the FIS World Cup at Copper Mountain

    Monster Energy congratulates team rider Ayumu Hirano on claiming first place in the Men's Snowboard…

    3 hours ago

    Mother of all bubbles: This is America’s ‘fatal flaw,’ expert says

    © 2024 Fortune Media IP Limited. All Rights Reserved. Use of this site constitutes acceptance…

    4 hours ago

    Qualcomm wins a legal battle over Arm chip licensing

    A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…

    2 days ago

    Three Comic/Movie/Band Reviews | Cup of Jo

    Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…

    2 days ago

    Actually, Flipping Properties Can Improve Housing Affordability—Here’s How

    15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…

    2 days ago