Categories: NATURE

Overconfidence in climate overshoot | Nature


  • Rogelj, J. et al. Credibility gap in net-zero climate targets leaves world at high risk. Science 380, 1014–1016 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • IPCC. Summary for policymakers. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) 1–48 (Cambridge Univ. Press, 2022).

  • Prütz, R., Strefler, J., Rogelj, J. & Fuss, S. Understanding the carbon dioxide removal range in 1.5 °C compatible and high overshoot pathways. Environ. Res. Commun. 5, 041005 (2023).


    Google Scholar
     

  • Schwinger, J., Asaadi, A., Steinert, N. J. & Lee, H. Emit now, mitigate later? Earth system reversibility under overshoots of different magnitudes and durations. Earth Syst. Dyn. 13, 1641–1665 (2022).

    ADS 

    Google Scholar
     

  • Pfleiderer, P., Schleussner, C.-F. & Sillmann, J. Limited reversal of regional climate signals in overshoot scenarios. Environ. Res. Clim. 3, 015005 (2024).

    ADS 

    Google Scholar
     

  • IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 3−32 (Cambridge Univ. Press, 2021).

  • MacDougall, A. H. et al. Is there warming in the pipeline? A multi-model analysis of the zero emissions commitment from CO2. Biogeosciences 17, 2987–3016 (2020).

    ADS 

    Google Scholar
     

  • Smith, S. et al. The State of Carbon Dioxide Removal 1st edn (MCC, 2023).

  • Deprez, A. et al. Sustainability limits needed for CO2 removal. Science 383, 484–486 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneider, S. H. & Mastrandrea, M. D. Probabilistic assessment of “dangerous” climate change and emissions pathways. Proc. Natl Acad. Sci. USA 102, 15728–15735 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wigley, T. M. L., Richels, R. & Edmonds, J. A. Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature 379, 240–243 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Azar, C., Johansson, D. J. A. & Mattsson, N. Meeting global temperature targets—the role of bioenergy with carbon capture and storage. Environ. Res. Lett. 8, 034004 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Schleussner, C.-F. et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Change 6, 827–835 (2016).

    ADS 

    Google Scholar
     

  • Rajamani, L. & Werksman, J. The legal character and operational relevance of the Paris Agreement’s temperature goal. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 376, 20160458 (2018).

    ADS 

    Google Scholar
     

  • Riahi, K. et al. Mitigation pathways compatible with long-term goals. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Shukla, P. R. et al.) 295–408 (Cambridge Univ. Press, 2022).

  • Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schleussner, C.-F., Ganti, G., Rogelj, J. & Gidden, M. J. An emission pathway classification reflecting the Paris Agreement climate objectives. Commun. Earth Environ. 3, 135 (2022).

    ADS 

    Google Scholar
     

  • Forster, P. et al. The Earth’s energy budget, climate feedbacks, and climate sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 923–1054 (Cambridge Univ. Press, 2023).

  • Palazzo Corner, S. et al. The Zero Emissions Commitment and climate stabilization. Front. Sci. 1, 1170744 (2023).


    Google Scholar
     

  • Grassi, G. et al. Harmonising the land-use flux estimates of global models and national inventories for 2000–2020. Earth Syst. Sci. Data 15, 1093–1114 (2023).

    ADS 

    Google Scholar
     

  • Meinshausen, M. et al. A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs). Geosci. Model Dev. 17, 4533–4559 (2024).

    ADS 

    Google Scholar
     

  • Zickfeld, K., Azevedo, D., Mathesius, S. & Matthews, H. D. Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions. Nat. Clim. Change 11, 613–617 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Baur, S., Nauels, A., Nicholls, Z., Sanderson, B. M. & Schleussner, C.-F. The deployment length of solar radiation modification: an interplay of mitigation, net-negative emissions and climate uncertainty. Earth Syst. Dyn. 14, 367–381 (2023).

    ADS 

    Google Scholar
     

  • Canadell, J. G. et al. Global carbon and other biogeochemical cycles and feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 673–816 (Cambridge Univ. Press, 2021).

  • McLaren, D., Willis, R., Szerszynski, B., Tyfield, D. & Markusson, N. Attractions of delay: using deliberative engagement to investigate the political and strategic impacts of greenhouse gas removal technologies. Environ. Plan. E Nat. Space 6, 578–599 (2023).


    Google Scholar
     

  • Powis, C. M., Smith, S. M., Minx, J. C. & Gasser, T. Quantifying global carbon dioxide removal deployment. Environ. Res. Lett. 18, 024022 (2023).

    ADS 

    Google Scholar
     

  • Lamb, W. F. et al. The carbon dioxide removal gap. Nat. Clim. Change 14, 644–651 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Prütz, R., Fuss, S., Lück, S., Stephan, L. & Rogelj, J. A taxonomy to map evidence on the co-benefits, challenges, and limits of carbon dioxide removal. Commun. Earth Environ. 5, 197 (2024).

    ADS 

    Google Scholar
     

  • Stuart-Smith, R. F., Rajamani, L., Rogelj, J. & Wetzer, T. Legal limits to the use of CO2 removal. Science 382, 772–774 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • King, A. D. et al. Preparing for a post-net-zero world. Nat. Clim. Change 12, 775–777 (2022).

    ADS 

    Google Scholar
     

  • Bellomo, K., Angeloni, M., Corti, S. & von Hardenberg, J. Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response. Nat. Commun. 12, 3659 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwinger, J., Asaadi, A., Goris, N. & Lee, H. Possibility for strong northern hemisphere high-latitude cooling under negative emissions. Nat. Commun. 13, 1095 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Möller, T. et al. Achieving net zero greenhouse gas emissions critical to limit climate tipping risks. Nat. Commun. 15, 6192 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santana-Falcón, Y. et al. Irreversible loss in marine ecosystem habitability after a temperature overshoot. Commun. Earth Environ. 4, 343 (2023).

    ADS 

    Google Scholar
     

  • Schleussner, C.-F. et al. Crop productivity changes in 1.5 °C and 2 °C worlds under climate sensitivity uncertainty. Environ. Res. Lett. 13, 064007 (2018).

    ADS 

    Google Scholar
     

  • Meyer, A. L. S., Bentley, J., Odoulami, R. C., Pigot, A. L. & Trisos, C. H. Risks to biodiversity from temperature overshoot pathways. Philos. Trans. R. Soc. B Biol. Sci. 377, 20210394 (2022).

    CAS 

    Google Scholar
     

  • Mengel, M., Nauels, A., Rogelj, J. & Schleussner, C.-F. Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action. Nat. Commun. 9, 601 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrijevic, M. et al. Towards scenario representation of adaptive capacity for global climate change assessments. Nat. Clim. Change 13, 778–787 (2023).

    ADS 

    Google Scholar
     

  • Thomas, A. et al. Global evidence of constraints and limits to human adaptation. Reg. Environ. Change 21, 85 (2021).


    Google Scholar
     

  • Birkmann, J. et al. Poverty, Livelihoods and Sustainable Development. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 1171–1274 (IPCC, 2022).

  • Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Parry, M., Lowe, J. & Hanson, C. Overshoot, adapt and recover. Nature 458, 1102–1103 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, J. W., Ordonez, A. & Svenning, J.-C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).

    PubMed 

    Google Scholar
     

  • UNFCC. National Adaptation Plans 2021. Progress in the Formulation and Implementation of NAPs (UNFCC, 2022).

  • Caney, S. Climate change, intergenerational equity and the social discount rate. Polit. Philos. Econ. 13, 320–342 (2014).


    Google Scholar
     

  • MacMartin, D. G., Ricke, K. L. & Keith, D. W. Solar geoengineering as part of an overall strategy for meeting the 1.5 °C Paris target. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 376, 20160454 (2018).

    ADS 

    Google Scholar
     

  • Biermann, F. et al. Solar geoengineering: the case for an international non-use agreement. WIREs Clim. Change 13, e754 (2022).


    Google Scholar
     

  • Fyson, C. L., Baur, S., Gidden, M. & Schleussner, C. Fair-share carbon dioxide removal increases major emitter responsibility. Nat. Clim. Change 10, 836–841 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Silvy, Y. et al. AERA-MIP: emission pathways, remaining budgets and carbon cycle dynamics compatible with 1.5 ºC and 2 ºC global warming stabilization. Preprint at https://doi.org/10.5194/egusphere-2024-488 (2024).

  • Hallegatte, S. Strategies to adapt to an uncertain climate change. Glob. Environ. Change 19, 240–247 (2009).


    Google Scholar
     

  • Lamboll, R., Rogelj, J. & Schleussner, C.-F. A guide to scenarios for the PROVIDE project. ESS Open Archive https://doi.org/10.1002/essoar.10511875.2 (2022).

  • Luderer, G. et al. Impact of declining renewable energy costs on electrification in low-emission scenarios. Nat. Energy 7, 32–42 (2022).

    ADS 

    Google Scholar
     

  • Riahi, K. et al. Mitigation pathways compatible with long-term goals. in IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).

  • Byers, E. et al. AR6 scenarios database. Zenodo https://doi.org/10.5281/zenodo.5886912 (2022).

  • Smith, C. J. et al. FAIR v1.3: a simple emissions-based impulse response and carbon cycle model. Geosci. Model Dev. 11, 2273–2297 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Nicholls, Z. et al. Cross-Chapter Box 7.1: Physical emulation of Earth System Models for scenario classification and knowledge integration in AR6. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • IPCC. Annex VII: Glossary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Matthews, J. B. R. et al.) 2215–2256 (Cambridge Univ. Press, 2021).

  • Sherwood, S. et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 58, e2019RG000678 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunne, J. P. et al. GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).

    ADS 

    Google Scholar
     

  • Burger, F. A., John, J. G. & Frölicher, T. L. Increase in ocean acidity variability and extremes under increasing atmospheric CO2. Biogeosciences 17, 4633–4662 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Terhaar, J., Frölicher, T. L., Aschwanden, M. T., Friedlingstein, P. & Joos, F. Adaptive emission reduction approach to reach any global warming target. Nat. Clim. Change 12, 1136–1142 (2022).

    ADS 

    Google Scholar
     

  • Frölicher, T. L., Jens, T., Fortunat, J. & Yona, S. Protocol for Adaptive Emission Reduction Approach (AERA) simulations. Zenodo https://doi.org/10.5281/zenodo.7473133 (2022).

  • Seland, Ø. et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 13, 6165–6200 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Jones, C. D. et al. The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions. Geosci. Model Dev. 12, 4375–4385 (2019).

    ADS 

    Google Scholar
     

  • De Hertog, S. J. et al. The biogeophysical effects of idealized land cover and land management changes in Earth system models. Earth Syst. Dyn. 14, 629–667 (2023).

    ADS 

    Google Scholar
     

  • O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. Discuss. 9, 3461–3482 (2016).

    ADS 

    Google Scholar
     

  • Quilcaille, Y., Gasser, T., Ciais, P. & Boucher, O. CMIP6 simulations with the compact Earth system model OSCAR v3.1. Geosci. Model Dev. 16, 1129–1161 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Qiu, C. et al. A strong mitigation scenario maintains climate neutrality of northern peatlands. One Earth 5, 86–97 (2022).

    ADS 

    Google Scholar
     

  • Lamboll, R., Rogelj, J. & Schleussner, C.-F. Scenario emissions and temperature data for PROVIDE project (v.1.1.1). Zenodo https://doi.org/10.5281/zenodo.6963586 (2022).

  • Lacroix, F., Burger, F., Silvy, Y., Schleussner, C.-F., & Frölicher, T. L. GFDL-ESM2M overshoot data. Zenodo https://doi.org/10.5281/zenodo.11091132 (2024).

  • Schleussner, C.-F. et al. Accompanying scripts for Schleussner et al. Overconfidence in Climate Overshoot. Zenodo https://doi.org/10.5281/zenodo.13208166 (2024).

  • Lane, J., Greig, C. & Garnett, A. Uncertain storage prospects create a conundrum for carbon capture and storage ambitions. Nat. Clim. Change 11, 925–936 (2021).

    ADS 

    Google Scholar
     

  • Fuss, S. et al. Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).

    ADS 

    Google Scholar
     

  • Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Heikkinen, J., Keskinen, R., Kostensalo, J. & Nuutinen, V. Climate change induces carbon loss of arable mineral soils in boreal conditions. Glob. Change Biol. 28, 3960–3973 (2022).

    CAS 

    Google Scholar
     

  • Chiquier, S., Patrizio, P., Bui, M., Sunny, N. & Dowell, N. M. A comparative analysis of the efficiency, timing, and permanence of CO2 removal pathways. Energy Environ. Sci. 15, 4389–4403 (2022).

    CAS 

    Google Scholar
     

  • Mengis, N., Paul, A. & Fernández-Méndez, M. Counting (on) blue carbon—Challenges and ways forward for carbon accounting of ecosystem-based carbon removal in marine environments. PLoS Clim. 2, e0000148 (2023).


    Google Scholar
     

  • Jones, C. D. et al. Simulating the Earth system response to negative emissions. Environ. Res. Lett. 11, 095012 (2016).

    ADS 

    Google Scholar
     

  • Realmonte, G. et al. An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nat. Commun. 10, 3277 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krause, A. et al. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts. Glob. Change Biol. 24, 3025–3038 (2018).

    ADS 

    Google Scholar
     

  • Minx, J. C. et al. Negative emissions—Part 1: research landscape and synthesis. Environ. Res. Lett. 13, 063001–063001 (2018).

    ADS 

    Google Scholar
     

  • Grant, N., Hawkes, A., Mittal, S. & Gambhir, A. Confronting mitigation deterrence in low-carbon scenarios. Environ. Res. Lett. 16, 64099–64099 (2021).

    CAS 

    Google Scholar
     

  • Carton, W., Hougaard, I.-M., Markusson, N. & Lund, J. F. Is carbon removal delaying emission reductions? Wiley Interdiscip. Rev. Clim. Change 14, e826 (2023).


    Google Scholar
     

  • Donnison, C. et al. Bioenergy with Carbon Capture and Storage (BECCS): finding the win–wins for energy, negative emissions and ecosystem services—size matters. Glob. Change Biol. Bioenergy 12, 586–604 (2020).

    CAS 

    Google Scholar
     

  • Heck, V., Hoff, H., Wirsenius, S., Meyer, C. & Kreft, H. Land use options for staying within the Planetary Boundaries – Synergies and trade-offs between global and local sustainability goals. Glob. Environ. Change 49, 73–84 (2018).


    Google Scholar
     

  • Doelman, J. C. et al. Afforestation for climate change mitigation: potentials, risks and trade-offs. Glob. Change Biol. 26, 1576–1591 (2020).

    ADS 

    Google Scholar
     

  • Lee, K., Fyson, C. & Schleussner, C. F. Fair distributions of carbon dioxide removal obligations and implications for effective national net-zero targets. Environ. Res. Lett. 16, 094001 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Ganti, G. et al. Uncompensated claims to fair emission space risk putting Paris Agreement goals out of reach. Environ. Res. Lett. 18, 024040 (2023).

    ADS 

    Google Scholar
     

  • Yuwono, B. et al. Doing burden-sharing right to deliver natural climate solutions for carbon dioxide removal. Nat. Based Solut. 3, 100048 (2023).


    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Qualcomm wins a legal battle over Arm chip licensing

    A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…

    2 days ago

    Three Comic/Movie/Band Reviews | Cup of Jo

    Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…

    2 days ago

    Actually, Flipping Properties Can Improve Housing Affordability—Here’s How

    15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…

    2 days ago

    Is solar geoengineering research having its moment?

    Particles in ship exhaust inadvertently cause cloud brightening – some geoengineering projects would try to…

    2 days ago

    5 Great Games to Put You in the Winter Mood

    The weather outside is frightful, but the iOS games are so delightful, let it play,…

    2 days ago

    Banner year for fixed-income funds leaves TCW and Western Asset behind

    A few flagship bond funds from some big-name Southern California-based firms saw outflows of more…

    2 days ago