Categories: NATURE

Observation-constrained projections reveal longer-than-expected dry spells


  • Seneviratne, S. I. et al. Weather and climate extreme events in a changing climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 1513–1766 https://doi.org/10.1017/9781009157896.013 (Cambridge Univ. Press, 2021).

  • Almazroui, M. et al. Projected changes in climate extremes using CMIP6 simulations over SREX regions. Earth Syst. Environ. 5, 481–497 (2021).

    Article 

    Google Scholar
     

  • Orlowsky, B. & Seneviratne, S. I. Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol. Earth Syst. Sci. 17, 1765–1781 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lu, J., Carbone, G. J. & Grego, J. M. Uncertainty and hotspots in 21st century projections of agricultural drought from CMIP5 models. Sci. Rep. 9, 4922 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vatter, J., Wagnitz, P., Schmiester J. & Hernandez, E. Drought Risk: The Global Thirst for Water in the Era of Climate Crisis (WWF Germany, 2019).

  • United Nations Office for Disaster Risk Reduction. Special Report on Drought 2021 (United Nations, 2021).

  • World Meteorological Organization. State of the Global Climate 2021 https://library.wmo.int/doc_num.php?explnum_id=11178 (WMO, 2022).

  • Yang, T., Ding, J., Liu, D., Wang, X. & Wang, T. Combined use of multiple drought indices for global assessment of dry gets drier and wet gets wetter paradigm. J. Clim. 32, 737–748 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Stephens, G. L. et al. Dreary state of precipitation in global models. J. Geophys. Res. Atmos. 115, https://doi.org/10.1029/2010JD014532 (2010).

  • Bastin, S. et al. Impact of humidity biases on light precipitation occurrence: observations versus simulations. Atmos. Chem. Phys. 19, 1471–1490 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sun, Y., Solomon, S., Dai, A. & Portmann, R. W. How often will it rain? J. Clim. 20, 4801–4818 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Nasrollahi, N. et al. How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? Water Resour. Res. 51, 2847–2864 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1218 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Vogel, M. M., Zscheischler, J. & Seneviratne, S. I. Varying soil moisture–atmosphere feedbacks explain divergent temperature extremes and precipitation projections in central Europe. Earth Syst. Dyn. 9, 1107–1125 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hirota, N., Michibata, T., Shiogama, H., Ogura, T. & Suzuki, K. Impacts of precipitation modeling on cloud feedback in MIROC6. Geophys. Res. Lett. 49, e2021GL096523 (2022).

  • Orth, R., Zscheischler, J. & Seneviratne, S. I. Record dry summer in 2015 challenges precipitation projections in Central Europe. Sci. Rep. 6, 28334 (2016).

  • Herrera-Estrada, J. E., Satoh, Y. & Sheffield, J. Spatiotemporal dynamics of global drought. Geophys. Res. Lett. https://doi.org/10.1002/2016GL071768 (2017).

    Article 

    Google Scholar
     

  • Topál, D., Hatvani, I. G. & Kern, Z. Refining projected multidecadal hydroclimate uncertainty in East-Central Europe using CMIP5 and single-model large ensemble simulations. Theor. Appl. Climatol. 142, 1147–1167 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, S. & Chen, J. Uncertainty in projection of climate extremes: a comparison of CMIP5 and CMIP6. J. Meteorol. Res. 35, 646–662 (2021).

    Article 

    Google Scholar
     

  • Maraun, D. et al. Towards process-informed bias correction of climate change simulations. Nat. Clim. Change 7, 764–773 (2017).

    Article 

    Google Scholar
     

  • Kreibich, H. et al. The challenge of unprecedented floods and droughts in risk management. Nature 608, 80–86 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brient, F. Reducing uncertainties in climate projections with emergent constraints: concepts, examples and prospects. Adv. Atmos. Sci. 37, 1–15 (2020).

    Article 

    Google Scholar
     

  • Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Taylor, I. H. et al. Contributions to uncertainty in projections of future drought under climate change scenarios. Hydrol. Earth Syst. Sci. Discuss. 9, 12613–12653 (2012).

    ADS 

    Google Scholar
     

  • Hausfather, Z. & Peters, G. P. Emissions – the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G. & Pitman, A. J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 47, https://doi.org/10.1029/2020GL087820 (2020).

  • Wainwright, C. M., Allan, R. P. & Black, E. Consistent trends in dry spell length in recent observations and future projections. Geophys. Res. Lett. 49, https://doi.org/10.1029/2021GL097231 (2022).

  • Li, J., Huo, R., Chen, H., Zhao, Y. & Zhao, T. Comparative assessment and future prediction using CMIP6 and CMIP5 for annual precipitation and extreme precipitation simulation. Front. Earth Sci. 9, https://doi.org/10.3389/feart.2021.687976 (2021).

  • Kim, Y.-H., Min, S.-K., Zhang, X., Sillmann, J. & Sandstad, M. Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather Clim. Extrem. 29, https://doi.org/10.1016/j.wace.2020.100269 (2020).

  • Funk, C. et al. Exploring trends in wet-season precipitation and drought indices in wet, humid and dry regions. Environ. Res. Lett. 14, 115002 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Chen, D., Dai, A. & Hall, A. The convective-to-total precipitation ratio and the “drizzling” bias in climate models. J. Geophys. Res. Atmos. 126, https://doi.org/10.1029/2020JD034198 (2021).

  • Simpson, I. R. et al. Observed humidity trends in dry regions contradict climate models. Proc. Natl Acad. Sci. USA 121, e2302480120 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cox, P. M. et al. Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor. Appl. Climatol. 78, 137–156 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Monteverde, C., De Sales, F. & Jones, C. Evaluation of the CMIP6 performance in simulating precipitation in the Amazon river basin. Climate 10, https://doi.org/10.3390/cli10080122 (2022).

  • Baker, J. C. A. et al. Robust Amazon precipitation projections in climate models that capture realistic land–atmosphere interactions. Environ. Res. Lett. 16, 074002 (2021).

  • Tierney, J. E., Ummenhofer, C. C. & deMenocal, P. B. Past and future rainfall in the Horn of Africa. Sci. Adv. 1, e1500682 (2015).

  • Baxter, A. J. et al. Reversed Holocene temperature–moisture relationship in the Horn of Africa. Nature 620, 336–343 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selten, F. M., Bintanja, R., Vautard, R. & van den Hurk, B. J. J. M. Future continental summer warming constrained by the present-day seasonal cycle of surface hydrology. Sci. Rep. 10, 4721 (2020).

  • Hirabayashi, Y., Tanoue, M., Sasaki, O., Zhou, X. & Yamazaki, D. Global exposure to flooding from the new CMIP6 climate model projections. Sci. Rep. 11, 3740 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, Q. et al. Recent frontiers of climate changes in East Asia at global warming of 1.5°C and 2°C. NPJ Clim. Atmos. Sci. 5, 80 (2022).

    Article 

    Google Scholar
     

  • Wang, Z., Duan, A., Yang, S. & Ullah, K. Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau. J. Geophys. Res. Atmos. 122, 614–630 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Dong, T. & Dong, W. Evaluation of extreme precipitation over Asia in CMIP6 models. Clim. Dyn. 57, 1751–1769 (2021).

    Article 

    Google Scholar
     

  • Zhang, R., Chu, Q., Zuo, Z. & Qi, Y. Summertime moisture sources and transportation pathways for China and associated atmospheric circulation patterns. Front. Earth Sci. 9, https://doi.org/10.3389/feart.2021.756943 (2021).

  • Donat, M. G., Pitman, A. J. & Angélil, O. Understanding and reducing future uncertainty in midlatitude daily heat extremes via land surface feedback constraints. Geophys. Res. Lett. 45, 10,627–10,636 (2018).

    Article 

    Google Scholar
     

  • Terai, C., Caldwell, P. & Klein, S. Why do climate models drizzle too much and what impact does this have? In AGU Fall Meeting Proceedings https://agu.confex.com/agu/fm16/meetingapp.cgi/Paper/162370 (2016).

  • Herrera-Estrada, J. E. & Sheffield, J. Uncertainties in future projections of summer droughts and heat waves over the contiguous United States. J. Clim. 30, 6225–6246 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wainwright, C. M. et al. ‘Eastern African paradox’ rainfall decline due to shorter not less intense long rains. NPJ Clim. Atmos. Sci. 2, 34 (2019).

  • Douville, H., Chadwick, R., Saint-Lu, M. & Medeiros, B. Drivers of dry day sensitivity to increased CO2. Geophys. Res. Lett. 50, https://doi.org/10.1029/2023GL103200 (2023).

  • Alexander, L. V. et al. Intercomparison of annual precipitation indices and extremes over global land areas from in situ, space-based and reanalysis products. Environ. Res. Lett. 15, 055002 (2020).

  • Zhang, X. et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Change 2, 851–870 (2011).

    Article 

    Google Scholar
     

  • Zhang, X. ETCCDI climate change indices. https://etccdi.pacificclimate.org/ (2020).

  • Donat, M. G. et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J. Geophys. Res. Atmos. https://doi.org/10.1002/jgrd.50150 (2013).

    Article 

    Google Scholar
     

  • Field, C. B. et al. (eds) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (Cambridge Univ. Press, 2012).

  • Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 111, https://doi.org/10.1029/2005JD006290 (2006).

  • Dunn, R. J. H. et al. Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3. J. Geophys. Res. Atmos. 125, https://doi.org/10.1029/2019JD032263 (2020).

  • Roca, R. et al. FROGS: A daily 1° × 1° gridded precipitation database of rain gauge, satellite and reanalysis products. Earth Syst. Sci. Data 11, 1017–1035 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Climpact https://climpact-sci.org/ (2012).

  • Python Language Reference, v.3.7 https://www.python.org (2019).

  • Huffman, G. J. et al. The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Xie, P. et al. Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeorol. 18, 1617–1641 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Bador, M. et al. Impact of higher spatial atmospheric resolution on precipitation extremes over land in global climate models. J. Geophys. Res. Atmos. 125, https://doi.org/10.1029/2019JD032184 (2020).

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Sillmann, J. ETCCDI extremes indices archive. https://climate-modelling.canada.ca/climatemodeldata/climdex/index.shtml.

  • Donat, M. G., Angélil, O. & Ukkola, A. M. Intensification of precipitation extremes in the world’s humid and water-limited regions. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab1c8e (2019).

  • Schulzweida, U. CDO User Guide (2.1.0). Zenodo https://doi.org/10.5281/zenodo.7112925 (2022).

  • Collins, M. et al. Quantifying future climate change. Nat. Clim. Change 2, 403–409 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Chang. 9, 102–110 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Caldwell, P. M. et al. Statistical significance of climate sensitivity predictors obtained by data mining. Geophys. Res. Lett. 41, 1803–1808 (2014).

    Article 
    ADS 

    Google Scholar
     

  • CMIP6 data from WCRP. Google Cloud Catalogue. https://cloud.google.com/datasets.

  • Pangeo Team. PANGEO: A community platform for Big Data geoscience. https://pangeo.io/ (2018).

  • Petrova, I. Y. Observation-constrained projections reveal longer-than-expected dry spells. Source data. Zenodo https://doi.org/10.5281/zenodo.11636527 (2024).

  • Brient, F. Reducing uncertainties in climate projections with emergent constraints: concepts. Source code: emergent constraints. Zenodo https://doi.org/10.5281/zenodo.10886174 (2024).

  • Petrova, I. Y. Observation-constrained projections reveal longer-than-expected dry spells. Source code. Zenodo https://doi.org/10.5281/zenodo.11637360 (2024).

  • Socioeconomic Data and Applications Center. Gridded Population of the World (GPW), v4. https://sedac.ciesin.columbia.edu/data/collection/gpw-v4 (1995).



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Meta, X approved ads containing violent anti-Muslim, antisemitic hate speech ahead of German election, study finds

    Social media giants Meta and X approved ads targeting users in Germany with violent anti-Muslim…

    1 day ago

    Have a Lovely Weekend. | Cup of Jo

    What are you up to this weekend? Anton, his friend, and I are on a…

    1 day ago

    My 2025 Macro Observations: Irrational Exuberance 3.0?

    In This Article If the last two years in financial markets were a movie, they’d…

    1 day ago

    Hair conditioner made from wood is black and smelly, but eco-friendly

    The black hair conditioner on the left is derived from the wood powder on the…

    1 day ago

    Test Your Decision-Making Skills and Reflexes in Not That One!

    For each level you’re presented with a mix of letters, numbers, and special characters. Your…

    1 day ago

    As banks retreat from DEI, Citi is making these changes to its diversity and hiring practices

    Citigroup says it will no longer require “diverse slates of candidates and diverse panels of…

    1 day ago