Categories: NATURE

Neuropeptide signalling orchestrates T cell differentiation


  • Kamperschroer, C. & Quinn, D. G. The role of proinflammatory cytokines in wasting disease during lymphocytic choriomeningitis virus infection. J. Immunol. 169, 340–349 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaiko, G. E., Horvat, J. C., Beagley, K. W. & Hansbro, P. M. Immunological decision-making: how does the immune system decide to mount a helper T-cell response? Immunology 123, 326–338 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahimi, K. et al. Targeting the balance of T helper cell responses by curcumin in inflammatory and autoimmune states. Autoimmun. Rev. 18, 738–748 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seder, R. A. & Paul, W. E. Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu. Rev. Immunol. 12, 635–673 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swain, S. L., McKinstry, K. K. & Strutt, T. M. Expanding roles for CD4+ T cells in immunity to viruses. Nat. Rev. Immunol. 12, 136–148 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Varga, S. M. & Welsh, R. M. High frequency of virus-specific interleukin-2-producing CD4+ T cells and Th1 dominance during lymphocytic choriomeningitis virus infection. J. Virol. 74, 4429–4432 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dardalhon, V., Korn, T., Kuchroo, V. K. & Anderson, A. C. Role of Th1 and Th17 cells in organ-specific autoimmunity. J. Autoimmun. 31, 252–256 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skapenko, A., Leipe, J., Lipsky, P. E. & Schulze-Koops, H. The role of the T cell in autoimmune inflammation. Arthritis Res. Ther. 7, S4 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, Z. & John Wherry, E. T cell responses in patients with COVID-19. Nat. Rev. Immunol. 20, 529–536 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wauters, E. et al. Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages. Cell Res. 31, 272–290 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gil-Etayo, F. J. et al. T-helper cell subset response is a determining factor in COVID-19 progression. Front. Cell Infect. Microbiol. 11, 624483 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pavel, A. B. et al. Th2/Th1 cytokine imbalance is associated with higher COVID-19 risk mortality. Front. Genet. 12, 706902 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wallrapp, A. et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549, 351–356 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wallrapp, A. et al. Calcitonin gene-related peptide negatively regulates alarmin-driven type 2 innate lymphoid cell responses. Immunity 51, 709–723 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kabata, H. & Artis, D. Neuro-immune crosstalk and allergic inflammation. J. Clin. Invest. 129, 1475–1482 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Chesné, J., Cardoso, V. & Veiga-Fernandes, H. Neuro-immune regulation of mucosal physiology. Mucosal Immunol. 12, 10–20 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jacobson, A., Yang, D., Vella, M. & Chiu, I. M. The intestinal neuro-immune axis: crosstalk between neurons, immune cells, and microbes. Mucosal Immunol. 14, 555–565 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Enamorado, M. et al. Immunity to the microbiota promotes sensory neuron regeneration. Cell 186, 607–620 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lighvani, A. A. et al. T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc. Natl Acad. Sci. USA 98, 15137–15142 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naïve CD4+ T cells. Nat. Immunol. 3, 549–557 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yosef, N. et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature 496, 461–468 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. An IL-27-driven transcriptional network identifies regulators of IL-10 expression across T helper cell subsets. Cell Rep. 33, 108433 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takeda, K. et al. Essential role of Stat6 in IL-4 signalling. Nature 380, 627–630 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaplan, M. H., Schindler, U., Smiley, S. T. & Grusby, M. J. Stat6 is required for mediating responses to IL-4 and for the development of Th2 cells. Immunity 4, 313–319 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khatun, A. et al. Single-cell lineage mapping of a diverse virus-specific naive CD4 T cell repertoire. J. Exp. Med. 218, e20200650 (2021).

  • Hale, J. S. et al. Distinct memory CD4+ T cells with commitment to T follicular helper- and T helper 1-cell lineages are generated after acute viral infection. Immunity 38, 805–817 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noble, A., Staynov, D. Z. & Kemeny, D. M. Generation of rat Th2-like cells in vitro is interleukin-4-dependent and inhibited by interferon-gamma. Immunology 79, 562–567 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • LaFleur, M. W. et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat. Commun. 10, 1668 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Huang, B. et al. In vivo CRISPR screens reveal a HIF-1α-mTOR-network regulates T follicular helper versus Th1 cells. Nat. Commun. 13, 805 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hay, D. L., Poyner, D. R. & Sexton, P. M. GPCR modulation by RAMPs. Pharmacol. Ther. 109, 173–197 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, H. et al. Transcriptional atlas of intestinal immune cells reveals that neuropeptide α-CGRP modulates group 2 innate lymphoid cell responses. Immunity 51, 696–708 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagashima, H. et al. Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation. Immunity 51, 682–695 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S. J. et al. A signaling cascade of nuclear calcium-CREB-ATF3 activated by synaptic NMDA receptors defines a gene repression module that protects against extrasynaptic NMDA receptor-induced neuronal cell death and ischemic brain damage. J. Neurosci. 31, 4978–4990 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. Y. et al. A critical role of STAT1 in streptozotocin-induced diabetic liver injury in mice: controlled by ATF3. Cell Signal. 21, 1758–1767 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baral, P. et al. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia. Nat. Med. 24, 417–426 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garelja, M. L. et al. Pharmacological characterisation of mouse calcitonin and calcitonin receptor-like receptors reveals differences compared with human receptors. Br. J. Pharmacol. 179, 416–434 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chu, H. M., Tan, Y., Kobierski, L. A., Balsam, L. B. & Comb, M. J. Activating transcription factor-3 stimulates 3,5′-cyclic adenosine monophosphate-dependent gene expression. Mol. Endocrinol. 8, 59–68 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W. J., Lai, Y. J., Lee, J. L., Wu, S. T. & Hsu, Y. J. CREB/ATF3 signaling mediates indoxyl sulfate-induced vascular smooth muscle cell proliferation and neointimal formation in uremia. Atherosclerosis 315, 43–54 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, W. et al. Localization and modulation of calcitonin gene-related peptide-receptor component protein-immunoreactive cells in the rat central and peripheral nervous systems. Neuroscience 120, 677–694 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Assas, B. M., Pennock, J. I. & Miyan, J. A. Calcitonin gene-related peptide is a key neurotransmitter in the neuro-immune axis. Front. Neurosci. 8, 23 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Chiu, I. M. et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501, 52–57 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sui, P. et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science 360, eaan8546 (2018).

  • Hanc, P. et al. Multimodal control of dendritic cell functions by nociceptors. Science 379, eabm5658 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, W., Stohl, L. L., Wagner, J. A. & Granstein, R. D. Calcitonin gene-related peptide biases Langerhans cells toward Th2-type immunity. J. Immunol. 181, 6020–6026 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edvinsson, L. CGRP antibodies as prophylaxis in migraine. Cell 175, 1719 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Assas, M. B. Anti-migraine agents from an immunological point of view. J. Transl. Med. 19, 23 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Mitsikostas, D. D. & Reuter, U. Calcitonin gene-related peptide monoclonal antibodies for migraine prevention: comparisons across randomized controlled studies. Curr. Opin. Neurol. 30, 272–280 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wehbi, V. L. & Taskén, K. Molecular mechanisms for cAMP-mediated immunoregulation in T cells—role of anchored protein kinase A signaling units. Front. Immunol. 7, 222 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Boudard, F. & Bastide, M. Inhibition of mouse T-cell proliferation by CGRP and VIP: effects of these neuropeptides on IL-2 production and cAMP synthesis. J. Neurosci. Res. 29, 29–41 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh-hashi, Y. et al. Elevated sympathetic nervous activity in mice deficient in alphaCGRP. Circ. Res. 89, 983–990 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsujikawa, K. et al. Hypertension and dysregulated proinflammatory cytokine production in receptor activity-modifying protein 1-deficient mice. Proc. Natl Acad. Sci. USA 104, 16702–16707 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dackor, R., Fritz-Six, K., Smithies, O. & Caron, K. Receptor activity-modifying proteins 2 and 3 have distinct physiological functions from embryogenesis to old age. J. Biol. Chem. 282, 18094–18099 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 128 (2013).

    Article 

    Google Scholar
     

  • Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Z. et al. Gene set knowledge discovery with Enrichr. Curr. Protoc. 1, e90 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waltman, L. & van Eck, N. J. A smart local moving algorithm for large-scale modularity-based community detection. Eur. Phys. J. B 86, 471 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genom. 19, 477 (2018).

    Article 

    Google Scholar
     

  • Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Model-Based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

  • Robinson, J. T. et al. Integrative Genomics Viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lun, A. T. & Smyth, G. K. csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding windows. Nucleic Acids Res. 44, e45 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chen, Y., Lun, A. & Smyth, G. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Research 5, 1438 (2016).

    PubMed 

    Google Scholar
     

  • Yu, G., Wang, L.-G. & He, Q.-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bioconductor Core Team & Bioconductor Package Maintainer. TxDb.Mmusculus.UCSC.mm10.knownGene: annotation package for TxDb object(s). R package version 3.4.7 (Bioconductor, 2019).

  • Carlson, M. org.Mm.eg.db: genome wide annotation for Mouse. R package version 3.8.2 (Bioconductor, 2019).

  • Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Olah, Z. et al. Ligand-induced dynamic membrane changes and cell deletion conferred by vanilloid receptor 1. J. Biol. Chem. 276, 11021–11030 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    One of Africa’s most successful founders is back with a new AI startup and already raised $9M

    In 2023, co-founders Karim Jouini and Jihed Othmani sold their expense management startup Expensya to…

    20 hours ago

    Everyday Clothes I’ve Worn a Million Times

    What do you wear on repeat? I would love to hear your trusty list! Here…

    22 hours ago

    Redfin Joins the Parade of Housing Bears—How Does Their Prediction Stack Up?

    In This Article Don’t expect your home equity to increase this year. That’s the forecast…

    22 hours ago

    Crafty cockatoos learn to use public drinking fountains

    Cockatoos in Sydney, Australia, have learned to use public water fountains by twisting a handle,…

    22 hours ago

    Cub8 Is Hypnotic and High Stakes Fun

    Gameplay is simple to pick up buy very difficult to master. You’ll tap on the…

    22 hours ago

    America’s biggest lender is closing its wallet — and investors and home buyers will feel it. Here’s what to watch.

    Prepare for higher U.S. interest rates if Japan cuts its U.S. Treasury bond holdings. But…

    22 hours ago