Categories: NATURE

Neuronal substance P drives metastasis through an extracellular RNA–TLR7 axis


  • Ayala, G. E. et al. Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin. Cancer Res. 14, 7593–7603 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, D. et al. Nerve fibers in breast cancer tissues indicate aggressive tumor progression. Medicine 93, e172 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oertel, H. Innervation and tumour growth: a preliminary report. Can. Med. Assoc. J. 18, 135–139 (1928).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renz, B. W. et al. β2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell 34, 863–867 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latil, A. et al. Quantification of expression of netrins, slits and their receptors in human prostate tumors. Int. J. Cancer 103, 306–315 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Osswald, M. et al. Brain tumour cells interconnect to a functional and resistant network. Nature 528, 93–98 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Venkatesh, H. S. et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161, 803–816 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkatesh, H. S. et al. Electrical and synaptic integration of glioma into neural circuits. Nature 573, 539–545 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, C. M. et al. Denervation suppresses gastric tumorigenesis. Sci. Transl. Med. 6, 250ra115 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magnon, C. et al. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Balood, M. et al. Nociceptor neurons affect cancer immunosurveillance. Nature 611, 405–412 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Globig, A. M. et al. The β1-adrenergic receptor links sympathetic nerves to T cell exhaustion. Nature 622, 383–392 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerendai, I. et al. Transneuronal labelling of nerve cells in the CNS of female rat from the mammary gland by viral tracing technique. Neuroscience 108, 103–118 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hebb, C. & Linzell, J. L. Innervation of the mammary gland. A histochemical study in the rabbit. Histochem. J. 2, 491–505 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tavora, B. et al. Tumoural activation of TLR3–SLIT2 axis in endothelium drives metastasis. Nature 586, 299–304 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brose, K. et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795–806 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen-Ngoc, K. V. et al. ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium. Proc. Natl Acad. Sci. USA 109, E2595–E2604 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aslakson, C. J. & Miller, F. R. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 52, 1399–1405 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Bujak, J. K., Kosmala, D., Szopa, I. M., Majchrzak, K. & Bednarczyk, P. Inflammation, cancer and immunity-implication of TRPV1 channel. Front. Oncol. 9, 1087 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liebig, C., Ayala, G., Wilks, J. A., Berger, D. H. & Albo, D. Perineural invasion in cancer: a review of the literature. Cancer 115, 3379–3391 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kastin, A. Handbook of Biologically Active Peptides (Academic, 2013).

  • Otsuka, M. & Konishi, S. Release of substance P-like immunoreactivity from isolated spinal cord of newborn rat. Nature 264, 83–84 (1976).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eshete, F. & Fields, R. D. Spike frequency decoding and autonomous activation of Ca2+-calmodulin-dependent protein kinase II in dorsal root ganglion neurons. J. Neurosci. 21, 6694–6705 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishikawa, S. et al. Two histidine residues are essential for ribonuclease T1 activity as is the case for ribonuclease A. Biochemistry 26, 8620–8624 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robertson, H. D., Webster, R. E. & Zinder, N. D. Purification and properties of ribonuclease III from Escherichia coli. J. Biol. Chem. 243, 82–91 (1968).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bremnes, R. M., Sirera, R. & Camps, C. Circulating tumour-derived DNA and RNA markers in blood: a tool for early detection, diagnostics, and follow-up? Lung Cancer 49, 1–12 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, W. et al. Site-specific RNase A activity was dramatically reduced in serum from multiple types of cancer patients. PLoS ONE 9, e96490 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Lamirande, G. Action of deoxyribonuclease and ribonuclease on the growth of Ehrlich ascites carcinoma in mice. Nature 192, 52–54 (1961).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ledoux, L. Action of ribonuclease on two solid tumours in vivo. Nature 176, 36–37 (1955).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lund, J. M. et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl Acad. Sci. USA 101, 5598–5603 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawasaki, T. & Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 5, 461 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ojaniemi, M. et al. Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated cytokine expression in mouse macrophages. Eur. J. Immunol. 33, 597–605 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ha, T. et al. TLR2 ligands induce cardioprotection against ischaemia/reperfusion injury through a PI3K/Akt-dependent mechanism. Cardiovasc. Res. 87, 694–703 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hesketh, P. J. et al. The oral neurokinin-1 antagonist aprepitant for the prevention of chemotherapy-induced nausea and vomiting: a multinational, randomized, double-blind, placebo-controlled trial in patients receiving high-dose cisplatin-the Aprepitant Protocol 052 Study Group. J. Clin. Oncol. 21, 4112–4119 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosso, M., Robles-Frias, M. J., Covenas, R., Salinas-Martin, M. V. & Munoz, M. The NK-1 receptor is expressed in human primary gastric and colon adenocarcinomas and is involved in the antitumor action of L-733,060 and the mitogenic action of substance P on human gastrointestinal cancer cell lines. Tumour Biol. 29, 245–254 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munoz, M. & Rosso, M. The NK-1 receptor antagonist aprepitant as a broad spectrum antitumor drug. Invest. N. Drugs 28, 187–193 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Nagakawa, O. et al. Effect of prostatic neuropeptides on invasion and migration of PC-3 prostate cancer cells. Cancer Lett. 133, 27–33 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nizam, E. & Erin, N. Differential consequences of neurokinin receptor 1 and 2 antagonists in metastatic breast carcinoma cells; effects independent of substance P. Biomed. Pharmacother. 108, 263–270 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le, T. T. et al. Sensory nerves enhance triple-negative breast cancer invasion and metastasis via the axon guidance molecule PlexinB3. NPJ Breast Cancer 8, 116 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Austin, M., Elliott, L., Nicolaou, N., Grabowska, A. & Hulse, R. P. Breast cancer induced nociceptor aberrant growth and collateral sensory axonal branching. Oncotarget 8, 76606–76621 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jurcak, N. R. et al. Axon guidance molecules promote perineural invasion and metastasis of orthotopic pancreatic tumors in mice. Gastroenterology 157, 838–850 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamiya, A. et al. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat. Neurosci. 22, 1289–1305 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zahalka, A. H. et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358, 321–326 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Partecke, L. I. et al. Subdiaphragmatic vagotomy promotes tumor growth and reduces survival via TNFα in a murine pancreatic cancer model. Oncotarget 8, 22501–22512 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renz, B. W. et al. Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness. Cancer Discov. 8, 1458–1473 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boilly, B., Faulkner, S., Jobling, P. & Hondermarck, H. Nerve dependence: from regeneration to cancer. Cancer Cell 31, 342–354 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amit, M. et al. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature 578, 449–454 (2020).

  • Kalinichenko, V. V., Mokyr, M. B., Graf, L. H. Jr, Cohen, R. L. & Chambers, D. A. Norepinephrine-mediated inhibition of antitumor cytotoxic T lymphocyte generation involves a β-adrenergic receptor mechanism and decreased TNF-α gene expression. J. Immunol. 163, 2492–2499 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohammadpour, H. et al. β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J. Clin. Invest. 129, 5537–5552 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benci, J. L. et al. Opposing functions of interferon coordinate adaptive and innate immune responses to cancer immune checkpoint blockade. Cell 178, 933–948 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Y. Q. et al. Primary afferent tachykinins are required to experience moderate to intense pain. Nature 392, 390–394 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guy, C. T., Cardiff, R. D. & Muller, W. J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell. Biol. 12, 954–961 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maroulakou, I. G., Anver, M., Garrett, L. & Green, J. E. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc. Natl Acad. Sci. USA 91, 11236–11240 (1994).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hale, J. J. et al. Structural optimization affording 2-(R)-(1-(R)-3, 5-bis(trifluoromethyl)phenylethoxy)-3-(S)-(4-fluoro)phenyl-4- (3-oxo-1,2,4-triazol-5-yl)methylmorpholine, a potent, orally active, long-acting morpholine acetal human NK-1 receptor antagonist. J. Med. Chem. 41, 4607–4614 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Padmanaban, V. et al. Organotypic culture assays for murine and human primary and metastatic-site tumors. Nat. Protoc. 15, 2413–2442 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, L., Sung, J., Stacey, G. & Masters, J. R. Detection of Mycoplasma in cell cultures. Nat. Protoc. 5, 929–934 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foty, R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J. Vis. Exp. https://doi.org/10.3791/2720 (2011).

  • Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jurk, M. et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat. Immunol. 3, 499 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maira, S. M. et al. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol. Cancer Ther. 11, 317–328 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davies, B. R. et al. Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. Mol. Cancer Ther. 11, 873–887 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Folkes, A. J. et al. The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J. Med. Chem. 51, 5522–5532 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Padmanaban, V. et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature 573, 439–444 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krause, S., Brock, A. & Ingber, D. E. Intraductal injection for localized drug delivery to the mouse mammary gland. J. Vis. Exp. https://doi.org/10.3791/50692 (2013).

  • Jancso, G., Kiraly, E., Such, G., Joo, F. & Nagy, A. Neurotoxic effect of capsaicin in mammals. Acta Physiol. Hung. 69, 295–313 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Chi, J. et al. Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density. Cell Metab. 27, 226–236 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luppi, P. H., Fort, P. & Jouvet, M. Iontophoretic application of unconjugated cholera toxin B subunit (CTb) combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrogradely labeled neurons. Brain Res. 534, 209–224 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gee, K. R. et al. Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium 27, 97–106 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Adam Candeub, a vocal critic of Big Tech, will reportedly join the FCC

    Adam Candeub, a known critic of Big Tech, looks poised to join the Federal Communications…

    22 hours ago

    10 Surprising Parenting Tips | Cup of Jo

    Whenever I meet a fellow mom, I feel like I’ve struck gold, since I know…

    23 hours ago

    Save Yourself Thousands of Dollars and Hours By Using This For Your Business

    15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…

    23 hours ago

    Bonobos can tell when they know something you don’t

    Kanzi, one of three captive bonobos whose mental abilities were tested in the studyApe Initiative…

    23 hours ago

    Dwellspring Transforms Your Sleep with Soothing Soundscapes

    In the digital age, it’s easy to lose sleep due to endless doom-scrolling through abrasive…

    24 hours ago