Categories: NATURE

Neuronal sequences in population bursts encode information in human cortex


  • Perkel, D. H. & Bullock, T. H. Neural coding. Neurosci. Res. Program Bull. 6, 221–348 (1968).


    Google Scholar
     

  • Rieke, F., Warland, D., de Ruyter van Steveninck, R. & Bialek, W. Spikes: Exploring the Neural Code (MIT Press, 1997).

  • Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raiguel, S. E., Xiao, D. K., Marcar, V. L. & Orban, G. A. Response latency of macaque area MT/V5 neurons and its relationship to stimulus parameters. J. Neurophysiol. 82, 1944–1956 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Celebrini, S., Thorpe, S., Trotter, Y. & Imbert, M. Dynamics of orientation coding in area VI of the awake primate. Vis. Neurosci. 10, 811–825 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luczak, A., McNaughton, B. L. & Harris, K. D. Packet-based communication in the cortex. Nat. Rev. Neurosci. 16, 745–755 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, N. D. et al. Cortical reactivations predict future sensory responses. Nature 625, 110–118 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanabe, S., Lee, H., Wang, S. & Hudetz, A. G. Spontaneous and visual stimulation evoked firing sequences are distinct under desflurane anesthesia. Neuroscience 528, 54–63 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thorpe, S. & Gautrais, J. in Computational Neuroscience: Trends in Research (ed. Bower, J. M.) 113–118 (Springer, 1998).

  • Van Rullen, R. & Thorpe, S. J. Rate coding versus temporal order coding: What the retinal ganglion cells tell the visual cortex. Neural Comput. 13, 1255–1283 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Boahen, K. Dendrocentric learning for synthetic intelligence. Nature 612, 43–50 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gautrais, J. & Thorpe, S. Rate coding versus temporal order coding: a theoretical approach. BioSystems 48, 57–65 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hahn, G., Ponce-Alvarez, A., Deco, G., Aertsen, A. & Kumar, A. Portraits of communication in neuronal networks. Nat. Rev. Neurosci. 20, 117–127 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palmigiano, A., Geisel, T., Wolf, F. & Battaglia, D. Flexible information routing by transient synchrony. Nat. Neurosci. 20, 1014–1022 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abeles, M. Corticonics: Neural Circuits of the Cerebral Cortex (Cambridge Univ. Press, 1991); https://doi.org/10.1017/CBO9780511574566.

  • Bermudez-Contreras, E. J. et al. Formation and reverberation of sequential neural activity patterns evoked by sensory stimulation are enhanced during cortical desynchronization. Neuron 79, 555–566 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montijn, J. S., Olcese, U. & Pennartz, C. M. A. Visual stimulus detection correlates with the consistency of temporal sequences within stereotyped events of V1 neuronal population activity. J. Neurosci. 36, 8624–8640 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shahbaba, B. et al. Hippocampal ensembles represent sequential relationships among an extended sequence of nonspatial events. Nat. Commun. 13, 787 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hahnloser, R. H. R., Kozhevnikov, A. A. & Fee, M. S. An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 797, 796–797 (2002).


    Google Scholar
     

  • Yiling, Y. et al. Robust encoding of natural stimuli by neuronal response sequences in monkey visual cortex. Nat. Commun. 14, 3021 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harnad, S. in Handbook of Categorization in Cognitive Science, vol. 1908 (eds Cohen, H. & Lefebvre, C.) 19–43 (Elsevier, 2005).

  • Jang, A. I., Wittig, J. H., Inati, S. K. & Zaghloul, K. A. Human cortical neurons in the anterior temporal lobe reinstate spiking activity during verbal memory retrieval. Curr. Biol. 27, 1700–1705 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wittig, J. H., Jang, A. I., Cocjin, J. B., Inati, S. K. & Zaghloul, K. A. Attention improves memory by suppressing spiking-neuron activity in the human anterior temporal lobe. Nat. Neurosci. 21, 808–810 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaz, A. P., Wittig, J. H., Inati, S. K. & Zaghloul, K. A. Replay of cortical spiking sequences during human memory retrieval. Science 367, 1131–1134 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong, A. P. S., Vaz, A. P., Wittig, J. H., Inati, S. K. & Zaghloul, K. A. Ripples reflect a spectrum of synchronous spiking activity in human anterior temporal lobe. eLife 10, e68401 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, K., Sibille, J. & Dragoi, G. Preconfigured patterns are the primary driver of offline multi-neuronal sequence replay. Hippocampus 29, 275–283 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ji, D. & Wilson, M. A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10, 100–107 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, W. et al. The medial temporal lobe supports the quality of visual short-term memory representation. Nat. Hum. Behav. 7, 627–641 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nádasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J. & Buzsáki, G. Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19, 9497–9507 (1999).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reber, T. P. et al. Representation of abstract semantic knowledge in populations of human single neurons in the medial temporal lobe. PLoS Biol. 17, 1–17 (2019).

    Article 

    Google Scholar
     

  • Ohayon, S., Freiwald, W. A. & Tsao, D. Y. What makes a cell face selective? The importance of contrast. Neuron 74, 567–581 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Resulaj, A., Ruediger, S., Olsen, S. R. & Scanziani, M. First spikes in visual cortex enable perceptual discrimination. eLife 7, e34044 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGill, W. J. Multivariate information transmission. Psychometrika 19, 97–116 (1954).

    Article 

    Google Scholar
     

  • Timme, N., Alford, W., Flecker, B. & Beggs, J. M. Synergy, redundancy, and multivariate information measures: an experimentalist’s perspective. J. Comput. Neurosci. 36, 119–140 (2014).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Kubkowski, M. & Mielniczuk, J. Asymptotic distributions of empirical interaction information. Methodol. Comput. Appl. Probab. 23, 291–315 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Luczak, A., McNaughton, B. L. & Kubo, Y. Neurons learn by predicting future activity. Nat. Mach. Intell. 4, 62–72 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sotomayor-Gómez, B., Battaglia, F. P. & Vinck, M. Differential population coding of natural movies through spike counts and temporal sequences. Preprint at bioRxiv https://doi.org/10.1101/2023.06.27.546669 (2023).

  • Gonzalo Cogno, S. et al. Minute-scale oscillatory sequences in medial entorhinal cortex. Nature 625, 338–344 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Buzsáki, G. & Tingley, D. Space and time: the hippocampus as a sequence generator. Trends Cogn. Sci. 22, 853–869 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norman, Y. et al. Hippocampal sharp-wave ripples linked to visual episodic recollection in humans. Science 365, eaax1030 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaz, A. P., Inati, S. K., Brunel, N. & Zaghloul, K. A. Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science 363, 975–978 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norman, Y., Raccah, O., Liu, S., Parvizi, J. & Malach, R. Hippocampal ripples and their coordinated dialogue with the default mode network during recent and remote recollection. Neuron 109, 2767–2780.e5 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verzhbinsky, I. A. et al. Co-occurring ripple oscillations facilitate neuronal interactions between cortical locations in humans. Proc. Natl Acad. Sci. USA 121, e2312204121 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luczak, A., Barthó, P., Marguet, S. L., Buzsáki, G. & Harris, K. D. Sequential structure of neocortical spontaneous activity in vivo. Proc. Natl Acad. Sci. USA 104, 347–352 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hemberger, M., Shein-Idelson, M., Pammer, L. & Laurent, G. Reliable sequential activation of neural assemblies by single pyramidal cells in a three-layered cortex. Neuron 104, 353–369.e5 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Branco, T., Clark, B. A. & Häusser, M. Dendritic discrimination of temporal input sequences in cortical neurons. Science 329, 1671–1675 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pouget, A., Dayan, P. & Zemel, R. Information processing with population codes. Nat. Rev. Neurosci. 1, 125–132 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beck, J. M. et al. Probabilistic Population Codes for Bayesian Decision Making. Neuron 60, 1142–1152 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maimon, G. & Assad, J. A. Beyond Poisson: increased spike-time regularity across primate parietal cortex. Neuron 62, 426–440 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Averbeck, B. B. Poisson or not Poisson: differences in spike train statistics between parietal cortical areas. Neuron 62, 310–311 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christopher Decharms, R. & Merzenich, M. M. Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381, 610–613 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Gawne, T. J., Kjaer, T. W. & Richmond, B. J. Latency: another potential code for feature binding in striate cortex. J. Neurophysiol. 76, 1356–1360 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steinmetz, P. N. et al. Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 404, 187–190 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Willenbockel, V. et al. Controlling low-level image properties: the SHINE toolbox. Behav. Res. Methods 42, 671–684 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Joshua, M., Elias, S., Levine, O. & Bergman, H. Quantifying the isolation quality of extracellularly recorded action potentials. J. Neurosci. Methods 163, 267–282 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Thorpe, S., Delorme, A. & Van Rullen, R. Spike-based strategies for rapid processing. Neural Netw. 14, 715–725 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farooq, U., Sibille, J., Liu, K. & Dragoi, G. Strengthened temporal coordination within pre-existing sequential cell assemblies supports trajectory replay. Neuron 103, 719–733.e7 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandrashekar, G. & Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 40, 16–28 (2014).

    Article 

    Google Scholar
     

  • Cohen, M. X. Analyzing Neural Time Series Data: Theory and Practice (MIT Press, 2014).

  • Prechelt, L. in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) vol. 7700 LECTU 55–69 (1998).

  • Estefan, D. P. et al. Volitional learning promotes theta phase coding in the human hippocampus. Proc. Natl Acad. Sci. USA 118, e2021238118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bakdash, J. Z. & Marusich, L. R. Repeated measures correlation. Front. Psychol. 8, 456 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, W. & Zhang, W. Effortfulness of visual working memory: gauged by physical exertion. J. Exp. Psychol. Gen. 152, 2074–2093 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Z. et al. Beyond t test and ANOVA: applications of mixed-effects models for more rigorous statistical analysis in neuroscience research. Neuron 110, 21–35 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenthal, R. & Rubin, D. B. r equivalent: a simple effect size indicator. Psychol. Methods 8, 492–496 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Xie, W., Bainbridge, W. A., Inati, S. K., Baker, C. I. & Zaghloul, K. A. Memorability of words in arbitrary verbal associations modulates memory retrieval in the anterior temporal lobe. Nat. Hum. Behav. 4, 937–948 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Note-Taking App Craft Updated With New Task Management Features and More

    The standout feature is the ability to create and stricter your ideas into a beautiful…

    15 hours ago

    Monster Energy’s Ayumu Hirano Claims Victory in Men’s Snowboard Halfpipe at the FIS World Cup at Copper Mountain

    Monster Energy congratulates team rider Ayumu Hirano on claiming first place in the Men's Snowboard…

    15 hours ago

    Mother of all bubbles: This is America’s ‘fatal flaw,’ expert says

    © 2024 Fortune Media IP Limited. All Rights Reserved. Use of this site constitutes acceptance…

    16 hours ago

    Qualcomm wins a legal battle over Arm chip licensing

    A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…

    3 days ago

    Three Comic/Movie/Band Reviews | Cup of Jo

    Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…

    3 days ago

    Actually, Flipping Properties Can Improve Housing Affordability—Here’s How

    15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…

    3 days ago