Categories: NATURE

Neural general circulation models for weather and climate


  • Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Balaji, V. et al. Are general circulation models obsolete? Proc. Natl Acad. Sci. USA 119, e2202075119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lam, R. et al. Learning skillful medium-range global weather forecasting. Science 382, 1416–1421 (2023).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Bi, K. et al. Accurate medium-range global weather forecasting with 3D neural networks. Nature 619, 533–538 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hourdin, F. et al. The art and science of climate model tuning. Bull. Am. Meteorol. Soc. 98, 589–602 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Bony, S. & Dufresne, J.-L. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 32, L20806 (2005).

  • Webb, M. J., Lambert, F. H. & Gregory, J. M. Origins of differences in climate sensitivity, forcing and feedback in climate models. Clim. Dyn. 40, 677–707 (2013).

    Article 

    Google Scholar
     

  • Sherwood, S. C., Bony, S. & Dufresne, J.-L. Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505, 37–42 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Palmer, T. & Stevens, B. The scientific challenge of understanding and estimating climate change. Proc. Natl Acad. Sci. USA 116, 24390–24395 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer, E. M., Beyerle, U. & Knutti, R. Robust spatially aggregated projections of climate extremes. Nat. Clim. Change 3, 1033–1038 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Field, C. B. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2012).

  • Rasp, S. et al. WeatherBench 2: A benchmark for the next generation of data-driven global weather models. J. Adv. Model. Earth Syst. 16, e2023MS004019 (2024).

  • Keisler, R. Forecasting global weather with graph neural networks. Preprint at https://arxiv.org/abs/2202.07575 (2022).

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, L. et al. Toward convective-scale prediction within the next generation global prediction system. Bull. Am. Meteorol. Soc. 100, 1225–1243 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Bonavita, M. On some limitations of current machine learning weather prediction models. Geophys. Res. Lett. 51, e2023GL107377 (2024).

  • Weyn, J. A., Durran, D. R. & Caruana, R. Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere. J. Adv. Model. Earth Syst. 12, e2020MS002109 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Watt-Meyer, O. et al. ACE: a fast, skillful learned global atmospheric model for climate prediction. Preprint at https://arxiv.org/abs/2310.02074 (2023).

  • Bretherton, C. S. Old dog, new trick: reservoir computing advances machine learning for climate modeling. Geophys. Res. Lett. 50, e2023GL104174 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Brenowitz, N. D. & Bretherton, C. S. Spatially extended tests of a neural network parametrization trained by coarse-graining. J. Adv. Model. Earth Syst. 11, 2728–2744 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Rasp, S., Pritchard, M. S. & Gentine, P. Deep learning to represent subgrid processes in climate models. Proc. Natl Acad. Sci. USA 115, 9684–9689 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuval, J. & O’Gorman, P. A. Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions. Nat. Commun. 11, 3295 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwa, A. et al. Machine-learned climate model corrections from a global storm-resolving model: performance across the annual cycle. J. Adv. Model. Earth Syst. 15, e2022MS003400 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Arcomano, T., Szunyogh, I., Wikner, A., Hunt, B. R. & Ott, E. A hybrid atmospheric model incorporating machine learning can capture dynamical processes not captured by its physics-based component. Geophys. Res. Lett. 50, e2022GL102649 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Han, Y., Zhang, G. J. & Wang, Y. An ensemble of neural networks for moist physics processes, its generalizability and stable integration. J. Adv. Model. Earth Syst. 15, e2022MS003508 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Gelbrecht, M., White, A., Bathiany, S. & Boers, N. Differentiable programming for Earth system modeling. Geosci. Model Dev. 16, 3123–3135 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Gneiting, T. & Raftery, A. E. Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102, 359–378 (2007).

    Article 
    MathSciNet 

    Google Scholar
     

  • Fortin, V., Abaza, M., Anctil, F. & Turcotte, R. Why should ensemble spread match the RMSE of the ensemble mean? J. Hydrometeorol. 15, 1708–1713 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Holton, J. R. An introduction to Dynamic Meteorology 5th edn (Elsevier, 2004).

  • Cheng, K.-Y. et al. Impact of warmer sea surface temperature on the global pattern of intense convection: insights from a global storm resolving model. Geophys. Res. Lett. 49, e2022GL099796 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Stevens, B. et al. DYAMOND: the dynamics of the atmospheric general circulation modeled on non-hydrostatic domains. Prog. Earth Planet. Sci. 6, 61 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ullrich, P. A. et al. TempestExtremes v2.1: a community framework for feature detection, tracking, and analysis in large datasets. Geosc. Model Dev. 14, 5023–5048 (2021).

    Article 

    Google Scholar
     

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Mitchell, D. M., Lo, Y. E., Seviour, W. J., Haimberger, L. & Polvani, L. M. The vertical profile of recent tropical temperature trends: persistent model biases in the context of internal variability. Environ. Res. Lett. 15, 1040b4 (2020).

    Article 

    Google Scholar
     

  • Bourke, W. A multi-level spectral model. I. Formulation and hemispheric integrations. Mon. Weather Rev. 102, 687–701 (1974).

    Article 
    ADS 

    Google Scholar
     

  • Ruiz, J. J., Pulido, M. & Miyoshi, T. Estimating model parameters with ensemble-based data assimilation: a review. J. Meteorol. Soc. Jpn Ser. II 91, 79–99 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Schneider, T., Lan, S., Stuart, A. & Teixeira, J. Earth system modeling 2.0: a blueprint for models that learn from observations and targeted high-resolution simulations. Geophys. Res. Lett. 44, 12–396 (2017).

    Article 

    Google Scholar
     

  • Schneider, T., Leung, L. R. & Wills, R. C. J. Opinion: Optimizing climate models with process knowledge, resolution, and artificial intelligence. Atmos. Chem. Phys. 24, 7041–7062 (2024).

  • Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 27, 3104–3112 (2014).

  • Haimberger, L., Tavolato, C. & Sperka, S. Toward elimination of the warm bias in historic radiosonde temperature records—some new results from a comprehensive intercomparison of upper-air data. J. Clim. 21, 4587–4606 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Bradbury, J. et al. JAX: composable transformations of Python+NumPy programs. GitHub http://github.com/google/jax (2018).

  • Durran, D. R. Numerical Methods for Fluid Dynamics: With Applications to Geophysics Vol. 32, 2nd edn (Springer, 2010).

  • Wang, P., Yuval, J. & O’Gorman, P. A. Non-local parameterization of atmospheric subgrid processes with neural networks. J. Adv. Model. Earth Syst. 14, e2022MS002984 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Daley, R. Normal mode initialization. Rev. Geophys. 19, 450–468 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Whitaker, J. S. & Kar, S. K. Implicit–explicit Runge–Kutta methods for fast–slow wave problems. Mon. Weather Rev. 141, 3426–3434 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Gilleland, E., Ahijevych, D., Brown, B. G., Casati, B. & Ebert, E. E. Intercomparison of spatial forecast verification methods. Weather Forecast. 24, 1416–1430 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Rasp, S. & Lerch, S. Neural networks for postprocessing ensemble weather forecasts. Month. Weather Rev. 146, 3885–3900 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Pacchiardi, L., Adewoyin, R., Dueben, P. & Dutta, R. Probabilistic forecasting with generative networks via scoring rule minimization. J. Mach. Learn. Res. 25, 1–64 (2024).

  • Smith, J. A., Kochkov, D., Norgaard, P., Yuval, J. & Hoyer, S. google-research/dinosaur: 1.0.0. Zenodo https://doi.org/10.5281/zenodo.11376145 (2024).

  • Kochkov, D. et al. google-research/neuralgcm: 1.0.0. Zenodo https://doi.org/10.5281/zenodo.11376143 (2024).

  • Rasp, S. et al. google-research/weatherbench2: v0.2.0. Zenodo https://doi.org/10.5281/zenodo.11376271 (2023).



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Google has given Anthropic more funding than previously known, show new filings

    Anthropic, a San Francisco startup often cast as an independent player in the AI race,…

    21 hours ago

    My Messy Road to Not Drinking

    I had stints where I didn’t drink, but that dry January felt different. I tucked…

    22 hours ago

    How the Top 1% Invest (and How Do YOU Compare?)

    How do the top 1% of Americans invest their money, and how do your investments…

    22 hours ago

    Saturn has 128 new moons – more than the rest of the planets combined

    Saturn now has a total of 274 moonsNASA/JPL/Space Science Institute A further 128 moons have…

    23 hours ago

    Six New Games Land on Apple Arcade in April

    Katamari Damacy Rolling LIVE is an Apple Arcade exclusive and sees you rolling up objects…

    23 hours ago

    Trump retreats from 50% tariffs on Canadian metals. Here’s what comes next.

    President Donald Trump on Tuesday backed off a 50% tariff on imports of Canadian steel…

    23 hours ago