Categories: NATURE

Near-identical macromolecules spontaneously partition into concentric circles


  • Seader, J. D., Henley, E. J. & Roper, D. K. Separation Process Principles (Wiley, 2011).

  • Baker, R. W. Membrane Technology and Applications (Wiley, 2023).

  • Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Welton, T. & Reichardt, C. Solvents and Solvent Effects in Organic Chemistry (Wiley, 2011).

  • Grover, P. K. & Ryall, R. L. Critical appraisal of salting-out and its implications for chemical and biological sciences. Chem. Rev. 105, 1–10 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arakawa, T. & Timasheff, S. N. Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding. Biochemistry 23, 5912–5923 (1984).

    CAS 
    PubMed 

    Google Scholar
     

  • Langmuir, I. The role of attractive and repulsive forces in the formation of tactoids, thixotropic gels, protein crystals and coacervates. J. Chem. Phys. 6, 873–896 (1938).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, F. et al. Reentrant condensation, liquid–liquid phase separation and crystallization in protein solutions induced by multivalent metal ions. Pure Appl. Chem. 86, 191–202 (2014).

    CAS 

    Google Scholar
     

  • Luisi, P. The Emergence of Life (Cambridge Univ. Press, 2006).

  • Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gouveia, B. et al. Capillary forces generated by biomolecular condensates. Nature 609, 255–264 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zarzar, L. D. et al. Dynamically reconfigurable complex emulsions via tunable interfacial tensions. Nature 518, 520–524 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagelberg, S. et al. Reconfigurable and responsive droplet-based compound micro-lenses. Nat. Commun. 8, 14673 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodling, A. E. et al. Colouration by total internal reflection and interference at microscale concave interfaces. Nature 566, 523–527 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Concellón, A., Fong, D. & Swager, T. M. Complex liquid crystal emulsions for biosensing. J. Am. Chem. Soc. 143, 9177–9182 (2021).

    PubMed 

    Google Scholar
     

  • Cacace, M. G., Landau, E. M. & Ramsden, J. J. The Hofmeister series: salt and solvent effects on interfacial phenomena. Q. Rev. Biophys. 30, 241–277 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Duong-Ly, K. C. & Gabelli, S. B. Salting out of proteins using ammonium sulfate precipitation. Methods Enzymol. 541, 85–94 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Bailey, F. E. Jr. & Callard, R. W. Some properties of poly(ethylene oxide)1 in aqueous solution. J. Appl. Polym. Sci. 1, 56–62 (1959).

    CAS 

    Google Scholar
     

  • Kim, C. W. & Rha, C. Phase separation of polyethylene glycol/salt aqueous two-phase systems. Phys. Chem. Liquids 38, 181–191 (2000).

    CAS 

    Google Scholar
     

  • Chao, Y. & Shum, H. C. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem. Soc. Rev. 49, 114–142 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe, C. et al. Cell-sized confinement initiates phase separation of polymer blends and promotes fractionation upon competitive membrane wetting. ACS Mater. Lett. 4, 1742–1748 (2022).

    CAS 

    Google Scholar
     

  • Mangiarotti, A., Chen, N., Zhao, Z., Lipowsky, R. & Dimova, R. Wetting and complex remodeling of membranes by biomolecular condensates. Nat. Commun. 14, 2809 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mori, S. & Barth, H. G. Size Exclusion Chromatography (Springer, 2011).

  • Snyder, L. R., Kirkland, J. J. & Dolan, J. W. Introduction to Modern Liquid Chromatography (Wiley, 2010).

  • Deegan, R. D. et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Yunker, P. J., Still, T., Lohr, M. A. & Yodh, A. G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476, 308–311 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, T.-S., Chen, T.-H., Shen, X. & Ho, C.-M. Nanochromatography driven by the coffee ring effect. Anal. Chem. 83, 1871–1873 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Tanner, L. H. The spreading of silicone oil drops on horizontal surfaces. J. Phys. D Appl. Phys. 12, 1473–1484 (1979).

    ADS 
    CAS 

    Google Scholar
     

  • Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. Wetting and spreading. Rev. Mod. Phys. 81, 739–805 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Hayes, R., Warr, G. G. & Atkin, R. Structure and nanostructure in ionic liquids. Chem. Rev. 115, 6357–6426 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Mezger, M. et al. Molecular layering of fluorinated ionic liquids at a charged sapphire (0001) surface. Science 322, 424–428 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sauerbrey, G. The use of quartz oscillators for weighing thin layers and for microweighing. Z. Fur. Phys. 155, 206–222 (1959).

    ADS 
    CAS 

    Google Scholar
     

  • Pappu, R. V., Cohen, S. R., Dar, F., Farag, M. & Kar, M. Phase transitions of associative biomacromolecules. Chem. Rev. 123, 8945–8987 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, D. et al. Tie-line analysis reveals interactions driving heteromolecular condensate formation. Phys. Rev. 12, 041038 (2022).

    CAS 

    Google Scholar
     

  • Zhang, W. et al. Liquid–liquid equilibrium of aqueous two-phase systems containing poly(ethylene glycol) of different molecular weights and several ammonium salts at 298.15 K. Thermochim. Acta 560, 47–54 (2013).

    CAS 

    Google Scholar
     

  • Wysoczanska, K. & Macedo, E. A. Influence of the molecular weight of PEG on the polymer/salt phase diagrams of aqueous two-phase systems. J. Chem. Eng. Data 61, 4229–4235 (2016).

    CAS 

    Google Scholar
     

  • Zhao, X. et al. Glycosylated queuosines in tRNAs optimize translational rate and post-embryonic growth. Cell 186, 5517–5535 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Entelis, S. G., Evreinov, V. V. & Gorshkov, A. V. Functionality and molecular weight distribution of telechelic polymers. Adv. Polym. Sci. 76, 129–175 (1987).


    Google Scholar
     

  • Gorbunov, A. & Trathnigg, B. Theory of liquid chromatography of mono- and difunctional macromolecules: I. Studies in the critical interaction mode. J. Chromatogr. A 955, 9–17 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Le Ouay, B. et al. Selective sorting of polymers with different terminal groups using metal-organic frameworks. Nat. Commun. 9, 3635 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, S. et al. Efficient separation of nucleic acids with different secondary structures by metal–organic frameworks. J. Am. Chem. Soc. 142, 5049–5059 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Schneider, C., Rasband, W. & Eliceiri, K. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hau, W. L. W., Trau, D. W., Sucher, N. J., Wong, M. & Zohar, Y. Surface-chemistry technology for microfluidics. J. Micromech. Microeng. 13, 272–278 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Chakraborty, A. & Sen, K. Impact of pH and temperature on phase diagrams of different aqueous biphasic systems. J. Chromatogr. A 1433, 41–55 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Miller, W. L. & McPherson, R. H. The behavior of colloidal suspensions with immiscible solvents. J. Phys. Chem. 12, 706–716 (1908).


    Google Scholar
     

  • Williamson, J. C. Liquid–liquid demonstrations: phase equilibria and the lever rule. J. Chem. Educ. 98, 2356–2363 (2021).

    CAS 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Meta, X approved ads containing violent anti-Muslim, antisemitic hate speech ahead of German election, study finds

    Social media giants Meta and X approved ads targeting users in Germany with violent anti-Muslim…

    2 days ago

    Have a Lovely Weekend. | Cup of Jo

    What are you up to this weekend? Anton, his friend, and I are on a…

    2 days ago

    My 2025 Macro Observations: Irrational Exuberance 3.0?

    In This Article If the last two years in financial markets were a movie, they’d…

    2 days ago

    Hair conditioner made from wood is black and smelly, but eco-friendly

    The black hair conditioner on the left is derived from the wood powder on the…

    2 days ago

    Test Your Decision-Making Skills and Reflexes in Not That One!

    For each level you’re presented with a mix of letters, numbers, and special characters. Your…

    2 days ago

    As banks retreat from DEI, Citi is making these changes to its diversity and hiring practices

    Citigroup says it will no longer require “diverse slates of candidates and diverse panels of…

    2 days ago