Categories: NATURE

Near-identical macromolecules spontaneously partition into concentric circles


  • Seader, J. D., Henley, E. J. & Roper, D. K. Separation Process Principles (Wiley, 2011).

  • Baker, R. W. Membrane Technology and Applications (Wiley, 2023).

  • Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Welton, T. & Reichardt, C. Solvents and Solvent Effects in Organic Chemistry (Wiley, 2011).

  • Grover, P. K. & Ryall, R. L. Critical appraisal of salting-out and its implications for chemical and biological sciences. Chem. Rev. 105, 1–10 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arakawa, T. & Timasheff, S. N. Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding. Biochemistry 23, 5912–5923 (1984).

    CAS 
    PubMed 

    Google Scholar
     

  • Langmuir, I. The role of attractive and repulsive forces in the formation of tactoids, thixotropic gels, protein crystals and coacervates. J. Chem. Phys. 6, 873–896 (1938).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, F. et al. Reentrant condensation, liquid–liquid phase separation and crystallization in protein solutions induced by multivalent metal ions. Pure Appl. Chem. 86, 191–202 (2014).

    CAS 

    Google Scholar
     

  • Luisi, P. The Emergence of Life (Cambridge Univ. Press, 2006).

  • Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gouveia, B. et al. Capillary forces generated by biomolecular condensates. Nature 609, 255–264 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zarzar, L. D. et al. Dynamically reconfigurable complex emulsions via tunable interfacial tensions. Nature 518, 520–524 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagelberg, S. et al. Reconfigurable and responsive droplet-based compound micro-lenses. Nat. Commun. 8, 14673 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodling, A. E. et al. Colouration by total internal reflection and interference at microscale concave interfaces. Nature 566, 523–527 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Concellón, A., Fong, D. & Swager, T. M. Complex liquid crystal emulsions for biosensing. J. Am. Chem. Soc. 143, 9177–9182 (2021).

    PubMed 

    Google Scholar
     

  • Cacace, M. G., Landau, E. M. & Ramsden, J. J. The Hofmeister series: salt and solvent effects on interfacial phenomena. Q. Rev. Biophys. 30, 241–277 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Duong-Ly, K. C. & Gabelli, S. B. Salting out of proteins using ammonium sulfate precipitation. Methods Enzymol. 541, 85–94 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Bailey, F. E. Jr. & Callard, R. W. Some properties of poly(ethylene oxide)1 in aqueous solution. J. Appl. Polym. Sci. 1, 56–62 (1959).

    CAS 

    Google Scholar
     

  • Kim, C. W. & Rha, C. Phase separation of polyethylene glycol/salt aqueous two-phase systems. Phys. Chem. Liquids 38, 181–191 (2000).

    CAS 

    Google Scholar
     

  • Chao, Y. & Shum, H. C. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem. Soc. Rev. 49, 114–142 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe, C. et al. Cell-sized confinement initiates phase separation of polymer blends and promotes fractionation upon competitive membrane wetting. ACS Mater. Lett. 4, 1742–1748 (2022).

    CAS 

    Google Scholar
     

  • Mangiarotti, A., Chen, N., Zhao, Z., Lipowsky, R. & Dimova, R. Wetting and complex remodeling of membranes by biomolecular condensates. Nat. Commun. 14, 2809 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mori, S. & Barth, H. G. Size Exclusion Chromatography (Springer, 2011).

  • Snyder, L. R., Kirkland, J. J. & Dolan, J. W. Introduction to Modern Liquid Chromatography (Wiley, 2010).

  • Deegan, R. D. et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Yunker, P. J., Still, T., Lohr, M. A. & Yodh, A. G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476, 308–311 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, T.-S., Chen, T.-H., Shen, X. & Ho, C.-M. Nanochromatography driven by the coffee ring effect. Anal. Chem. 83, 1871–1873 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Tanner, L. H. The spreading of silicone oil drops on horizontal surfaces. J. Phys. D Appl. Phys. 12, 1473–1484 (1979).

    ADS 
    CAS 

    Google Scholar
     

  • Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. Wetting and spreading. Rev. Mod. Phys. 81, 739–805 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Hayes, R., Warr, G. G. & Atkin, R. Structure and nanostructure in ionic liquids. Chem. Rev. 115, 6357–6426 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Mezger, M. et al. Molecular layering of fluorinated ionic liquids at a charged sapphire (0001) surface. Science 322, 424–428 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sauerbrey, G. The use of quartz oscillators for weighing thin layers and for microweighing. Z. Fur. Phys. 155, 206–222 (1959).

    ADS 
    CAS 

    Google Scholar
     

  • Pappu, R. V., Cohen, S. R., Dar, F., Farag, M. & Kar, M. Phase transitions of associative biomacromolecules. Chem. Rev. 123, 8945–8987 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, D. et al. Tie-line analysis reveals interactions driving heteromolecular condensate formation. Phys. Rev. 12, 041038 (2022).

    CAS 

    Google Scholar
     

  • Zhang, W. et al. Liquid–liquid equilibrium of aqueous two-phase systems containing poly(ethylene glycol) of different molecular weights and several ammonium salts at 298.15 K. Thermochim. Acta 560, 47–54 (2013).

    CAS 

    Google Scholar
     

  • Wysoczanska, K. & Macedo, E. A. Influence of the molecular weight of PEG on the polymer/salt phase diagrams of aqueous two-phase systems. J. Chem. Eng. Data 61, 4229–4235 (2016).

    CAS 

    Google Scholar
     

  • Zhao, X. et al. Glycosylated queuosines in tRNAs optimize translational rate and post-embryonic growth. Cell 186, 5517–5535 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Entelis, S. G., Evreinov, V. V. & Gorshkov, A. V. Functionality and molecular weight distribution of telechelic polymers. Adv. Polym. Sci. 76, 129–175 (1987).


    Google Scholar
     

  • Gorbunov, A. & Trathnigg, B. Theory of liquid chromatography of mono- and difunctional macromolecules: I. Studies in the critical interaction mode. J. Chromatogr. A 955, 9–17 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Le Ouay, B. et al. Selective sorting of polymers with different terminal groups using metal-organic frameworks. Nat. Commun. 9, 3635 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, S. et al. Efficient separation of nucleic acids with different secondary structures by metal–organic frameworks. J. Am. Chem. Soc. 142, 5049–5059 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Schneider, C., Rasband, W. & Eliceiri, K. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hau, W. L. W., Trau, D. W., Sucher, N. J., Wong, M. & Zohar, Y. Surface-chemistry technology for microfluidics. J. Micromech. Microeng. 13, 272–278 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Chakraborty, A. & Sen, K. Impact of pH and temperature on phase diagrams of different aqueous biphasic systems. J. Chromatogr. A 1433, 41–55 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Miller, W. L. & McPherson, R. H. The behavior of colloidal suspensions with immiscible solvents. J. Phys. Chem. 12, 706–716 (1908).


    Google Scholar
     

  • Williamson, J. C. Liquid–liquid demonstrations: phase equilibria and the lever rule. J. Chem. Educ. 98, 2356–2363 (2021).

    CAS 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Qualcomm wins a legal battle over Arm chip licensing

    A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…

    2 days ago

    Three Comic/Movie/Band Reviews | Cup of Jo

    Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…

    2 days ago

    Actually, Flipping Properties Can Improve Housing Affordability—Here’s How

    15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…

    2 days ago

    Is solar geoengineering research having its moment?

    Particles in ship exhaust inadvertently cause cloud brightening – some geoengineering projects would try to…

    2 days ago

    5 Great Games to Put You in the Winter Mood

    The weather outside is frightful, but the iOS games are so delightful, let it play,…

    2 days ago

    Banner year for fixed-income funds leaves TCW and Western Asset behind

    A few flagship bond funds from some big-name Southern California-based firms saw outflows of more…

    2 days ago