Categories: NATURE

Local probe of bulk and edge states in a fractional Chern insulator


  • Barber, M. E., Ma, E. Y. & Shen, Z.-X. Microwave impedance microscopy and its application to quantum materials. Nat. Rev. Phys. 4, 61–74 (2022).

    Article 

    Google Scholar
     

  • Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395 (1983).

    Article 

    Google Scholar
     

  • Halperin, B. I. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583 (1984).

    Article 

    Google Scholar
     

  • Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722 (1984).

    Article 

    Google Scholar
     

  • Stern, A. Anyons and the quantum Hall effect—a pedagogical review. Ann. Phys. 323, 204–249 (2008).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Goldman, V. & Su, B. Resonant tunneling in the quantum Hall regime: measurement of fractional charge. Science 267, 1010–1012 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, J. et al. Localization of fractionally charged quasi-particles. Science 305, 980–983 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Radu, I. P. et al. Quasi-particle properties from tunneling in the v = 5/2 fractional quantum Hall state. Science 320, 899–902 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De-Picciotto, R. et al. Direct observation of a fractional charge. Physica B 249, 395–400 (1998).

    Article 

    Google Scholar
     

  • Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Pascher, N. et al. Imaging the conductance of integer and fractional quantum Hall edge states. Phys. Rev. X 4, 011014 (2014).


    Google Scholar
     

  • Chang, A. Chiral Luttinger liquids at the fractional quantum Hall edge. Rev. Mod. Phys. 75, 1449 (2003).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Ashoori, R., Stormer, H., Pfeiffer, L., Baldwin, K. & West, K. Edge magnetoplasmons in the time domain. Phys. Rev. B 45, 3894 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Stuhl, B., Lu, H.-I., Aycock, L., Genkina, D. & Spielman, I. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, R. et al. Observation of chiral edge transport in a rapidly rotating quantum gas. Nature https://doi.org/10.1038/s41567-024-02617-7 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai, K. et al. Imaging of Coulomb-driven quantum Hall edge states. Phys. Rev. Lett. 107, 176809 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Cui, Y.-T. et al. Unconventional correlation between quantum Hall transport quantization and bulk state filling in gated graphene devices. Phys. Rev. Lett. 117, 186601 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Yacoby, A., Hess, H., Fulton, T., Pfeiffer, L. & West, K. Electrical imaging of the quantum Hall state. Solid State Commun. 111, 1–13 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Suddards, M., Baumgartner, A., Henini, M. & Mellor, C. J. Scanning capacitance imaging of compressible and incompressible quantum Hall effect edge strips. New J. Phys. 14, 083015 (2012).

    Article 

    Google Scholar
     

  • Shi, Y. et al. Imaging quantum spin Hall edges in monolayer WTe2. Sci. Adv. 5, eaat8799 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allen, M. et al. Visualization of an axion insulating state at the transition between 2 chiral quantum anomalous Hall states. Proc. Natl Acad. Sci. 116, 14511–14515 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).

    CAS 

    Google Scholar
     

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uri, A. et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature 581, 47–52 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chu, Z. et al. Unveiling defect-mediated carrier dynamics in monolayer semiconductors by spatiotemporal microwave imaging. Proc. Natl Acad. Sci. 117, 13908–13913 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, Y.-T., Ma, E. Y. & Shen, Z.-X. Quartz tuning fork based microwave impedance microscopy. Rev. Sci. Instrum. 87, 063711 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, X. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 17, 715–719 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ji, Z. et al. Harnessing excitons at the nanoscale–photoelectrical platform for quantitative sensing and imaging. Preprint at https://arxiv.org/abs/2311.04211 (2023).

  • Dong, J., Wang, J., Ledwith, P. J., Vishwanath, A. & Parker, D. E. Composite Fermi liquid at zero magnetic field in twisted MoTe2. Phys. Rev. Lett. 131, 136502 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldman, H., Reddy, A. P., Paul, N. & Fu, L. Zero-field composite Fermi liquid in twisted semiconductor bilayers. Phys. Rev. Lett. 131, 136501 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, T. et al. Probing the edge states of Chern insulators using microwave impedance microscopy. Phys. Rev. B 108, 235432 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lee, D.-H., Wang, Z. & Kivelson, S. Quantum percolation and plateau transitions in the quantum Hall effect. Phys. Rev. Lett. 70, 4130 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen, X.-G. Theory of the edge states in fractional quantum Hall effects. Int. J. Mod. Phys. B 6, 1711–1762 (1992).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Zülicke, U., MacDonald, A. & Johnson, M. Observability of counterpropagating modes at fractional quantum Hall edges. Phys. Rev. B 58, 13778 (1998).

    Article 

    Google Scholar
     

  • Sabo, R. et al. Edge reconstruction in fractional quantum Hall states. Nat. Phys. 13, 491–496 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kane, C., Fisher, M. P. & Polchinski, J. Randomness at the edge: theory of quantum Hall transport at filling ν=2/3. Phys. Rev. Lett. 72, 4129 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Redekop, E. et al. Direct magnetic imaging of fractional Chern insulators in twisted MoTe2 with a superconducting sensor. Preprint at https://arxiv.org/abs/2405.10269 (2024).

  • Dutta, B. et al. Distinguishing between non-abelian topological orders in a quantum Hall system. Science 375, 193–197 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Meir, Y. Composite edge states in the ν=2/3 fractional quantum Hall regime. Phys. Rev. Lett. 72, 2624 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Fabry-Pérot interferometry at the ν = 2/5 fractional quantum Hall state. Phys. Rev. X 13, 041012 (2023).

    CAS 

    Google Scholar
     

  • Santos, L. H., Cano, J., Mulligan, M. & Hughes, T. L. Symmetry-protected topological interfaces and entanglement sequences. Phys. Rev. B 98, 075131 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Crépel, V., Claussen, N., Estienne, B. & Regnault, N. Model states for a class of chiral topological order interfaces. Nat. Commun. 10, 1861 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crépel, V., Claussen, N., Regnault, N. & Estienne, B. Microscopic study of the Halperin–Laughlin interface through matrix product states. Nat. Commun. 10, 1860 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, Z. et al. Original data for “Local probe of bulk and edge states in a fractional Chern insulator”. Dryad https://doi.org/10.5061/dryad.9p8cz8ws0 (2024).



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Meta, X approved ads containing violent anti-Muslim, antisemitic hate speech ahead of German election, study finds

    Social media giants Meta and X approved ads targeting users in Germany with violent anti-Muslim…

    2 days ago

    Have a Lovely Weekend. | Cup of Jo

    What are you up to this weekend? Anton, his friend, and I are on a…

    2 days ago

    My 2025 Macro Observations: Irrational Exuberance 3.0?

    In This Article If the last two years in financial markets were a movie, they’d…

    2 days ago

    Hair conditioner made from wood is black and smelly, but eco-friendly

    The black hair conditioner on the left is derived from the wood powder on the…

    2 days ago

    Test Your Decision-Making Skills and Reflexes in Not That One!

    For each level you’re presented with a mix of letters, numbers, and special characters. Your…

    2 days ago

    As banks retreat from DEI, Citi is making these changes to its diversity and hiring practices

    Citigroup says it will no longer require “diverse slates of candidates and diverse panels of…

    2 days ago