Fraser C. G. Biological Variation: From Principles to Practice (American Association for Clinical Chemistry, 2001).
Harris, E. K. & Yasaka, T. On the calculation of a “reference change” for comparing two consecutive measurements. Clin. Chem. 29, 25–30 (1983).
Jameson, J. L. & Longo, D. L. Precision medicine—personalized, problematic, and promising. N. Engl. J. Med. 372, 2229–2234 (2015).
Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).
Cannon W. B. The Wisdom of the Body 2nd edn (Norton & Co., 1939).
Horton, S. et al. The top 25 laboratory tests by volume and revenue in five different countries. Am. J. Clin. Pathol. 151, 446–451 (2019).
Blood tests. NHLBI www.nhlbi.nih.gov/health/blood-tests (accessed 18 July 2023).
Aarsand A. et al. The EFLM Biological Variation Database (EFLM, accessed 14 February 2023); https://biologicalvariation.eu/.
Fraser, C. G. Reference change values. Clin. Chem. Lab. Med. 50, 807–812 (2011).
Wang, S., Zhao, M., Su, Z. & Mu, R. Annual biological variation and personalized reference intervals of clinical chemistry and hematology analytes. Clin. Chem. Lab. Med. 60, 606–617 (2022).
Garner, C. et al. Genetic influences on F cells and other hematologic variables: a twin heritability study. Blood 95, 342–346 (2000).
Cohen, N. M. et al. Personalized lab test models to quantify disease potentials in healthy individuals. Nat. Med. 27, 1582–1591 (2021).
Foy, B. H., Sundt, T. M., Carlson, J. C. T., Aguirre, A. D. & Higgins, J. M. Human acute inflammatory recovery is defined by co-regulatory dynamics of white blood cell and platelet populations. Nat. Commun. 13, 4705 (2022).
Obermeyer, Z. & Pope, D. Variation in common laboratory test results caused by ambient temperature. Med 2, 1314–1326.e2 (2021).
Sterling, P. Allostasis: a model of predictive regulation. Physiol. Behav. 106, 5–15 (2012).
Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).
Vuckovic, D. et al. The polygenic and monogenic basis of blood traits and diseases. Cell 182, 1214–1231.e11 (2020).
Handtke, S. & Thiele, T. Large and small platelets—(when) do they differ? J. Thromb. Haemost. 18, 1256–1267 (2020).
Foy, B. H. et al. Computer vision quantitation of erythrocyte shape abnormalities provides diagnostic, prognostic, and mechanistic insight. Blood Adv. 7, 4621–4630 (2023).
Kassebaum, N. J. et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood 123, 615–624 (2014).
Fulgoni, V. L. III, Agarwal, S., Kellogg, M. D. & Lieberman, H. R. Establishing pediatric and adult RBC reference intervals with NHANES data using piecewise regression. Am. J. Clin. Pathol. 151, 128–142 (2019).
Antonijević, N., Nesović, M., Trbojević, B. & Milosević, R. Anemia in hypothyroidism. Med. Pregl. 52, 136–140 (1999).
Marks, P. W. Hematologic manifestations of liver disease. Semin. Hematol. 50, 216–221 (2013).
Wernick, B. et al. Temporal changes in hematologic markers after splenectomy, splenic embolization, and observation for trauma. Eur. J. Trauma Emerg. Surg. 43, 399–409 (2017).
Whitfield, J. B., Martin, N. G. & Rao, D. C. Genetic and environmental influences on the size and number of cells in the blood. Genet. Epidemiol. 2, 133–144 (1985).
Remacha, A. F. et al. Erytrocyte-related phenotypes and genetic susceptibility to thrombosis. Blood Cells Mol. Dis. 59, 44–48 (2016).
Williams, P. T. Quantile-specific heritability of mean platelet volume, leukocyte count, and other blood cell phenotypes. Lifestyle Genom. 15, 111–123 (2022).
Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).
Patel H. H., Patel H. R. & Higgins J. M. Modulation of red blood cell population dynamics is a fundamental homeostatic response to disease. Am. J. Hematol. https://doi.org/10.1002/ajh.23982 (2015).
Perlstein T. S., Weuve J., Pfeffer M. A. & Beckman J. A. Red blood cell distribution width and mortality risk in a community-based prospective cohort. Arch. Intern. Med. https://doi.org/10.1001/archinternmed.2009.55 (2009).
Huang, Y. L. & Hu, Z. D. Lower mean corpuscular hemoglobin concentration is associated with poorer outcomes in intensive care unit admitted patients with acute myocardial infarction. Ann. Transl. Med. 4, 190 (2016).
Güngör, B. et al. Elevated levels of RDW is associated with non-valvular atrial fibrillation. J. Thromb. Thrombolysis 37, 404–410 (2014).
Foy, B. H. et al. Association of red blood cell distribution width with mortality risk in hospitalized adults with SARS-CoV-2 infection. JAMA Netw. Open. 3, e2022058 (2020).
Xu, S. L. et al. The association between admission mean corpuscular volume and preoperative deep venous thrombosis in geriatrics hip fracture: a retrospective study. BMC Musculoskelet. Disord. 25, 40 (2024).
Vozarova, B. et al. High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 51, 455–461 (2002).
Gu, M. et al. Multiparameter prediction of myeloid neoplasia risk. Nat. Genet. 55, 1523–1530 (2023).
Oeffinger, K. C. et al. Breast cancer screening for women at average risk: 2015 guideline update from the American Cancer Society. JAMA 314, 1599–1614 (2015).
Wolf, A. M. D. et al. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society. CA 68, 250–281 (2018).
Arnett, D. K. et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 140, e596–e646 (2019).
Rooney, M. R. et al. Risk of progression to diabetes among older adults with prediabetes. JAMA Intern. Med. 181, 511–519 (2021).
Tozzo, V. et al. Estimating glycemia from HbA1c and CGM: analysis of accuracy and sources of discrepancy. Diabetes Care 47, 460–466 (2024).
Malka, R., Nathan, D. M. & Higgins, J. M. Mechanistic modeling of hemoglobin glycation and red blood cell kinetics enables personalized diabetes monitoring. Sci. Transl. Med. 8, 359ra130 (2016).
Madhu, S. V., Raj, A., Gupta, S., Giri, S. & Rusia, U. Effect of iron deficiency anemia and iron supplementation on HbA1c levels—implications for diagnosis of prediabetes and diabetes mellitus in Asian Indians. Clin. Chim. Acta 468, 225–229 (2017).
Pauker, S. G. & Kassirer, J. P. Decision analysis. N. Engl. J. Med. 316, 250–258 (1987).
Coşkun, A. et al. Within-subject and between-subject biological variation estimates of 21 hematological parameters in 30 healthy subjects. Clin. Chem. Lab. Med. 56, 1309–1318 (2018).
Adeli, K. et al. Biochemical marker reference values across pediatric, adult, and geriatric ages: establishment of robust pediatric and adult reference intervals on the basis of the Canadian Health Measures Survey. Clin. Chem. 61, 1049–1062 (2015).
Coskun, A. et al. Systematic review and meta-analysis of within-subject and between-subject biological variation estimates of 20 haematological parameters. Clin. Chem. Lab. Med. 58, 25–32 (2019).
Schumacher, Y. O., Saugy, M., Pottgiesser, T. & Robinson, N. Detection of EPO doping and blood doping: the haematological module of the Athlete Biological Passport. Drug Test. Anal. 4, 846–853 (2012).
Cosentino, J. et al. Inference of chronic obstructive pulmonary disease with deep learning on raw spirograms identifies new genetic loci and improves risk models. Nat. Genet. 55, 787–795 (2023).
Khurshid, S. et al. Clinical and genetic associations of deep learning-derived cardiac magnetic resonance-based left ventricular mass. Nat. Commun. 14, 1558 (2023).
Nauffal, V. et al. Genetics of myocardial interstitial fibrosis in the human heart and association with disease. Nat. Genet. 55, 777–786 (2023).
Golub, M. S., Hogrefe, C. E., Malka, R. & Higgins, J. M. Developmental plasticity of red blood cell homeostasis. Am. J. Hematol. 89, 459–466 (2014).
Gluckman, P. D., Hanson, M. A., Cooper, C. & Thornburg, K. L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 359, 61–73 (2008).
Fuchs, C. S. et al. A prospective study of family history and the risk of colorectal cancer. N. Engl. J. Med. 331, 1669–1674 (1994).
van Velzen, H. G. et al. Value of genetic testing for the prediction of long-term outcome in patients with hypertrophic cardiomyopathy. Am. J. Cardiol. 118, 881–887 (2016).
Malka, R., Brugnara, C., Cialic, R. & Higgins, J. M. Non-parametric combined reference regions and prediction of clinical risk. Clin. Chem. 66, 363–372 (2020).
Boyd, J. C. & Lacher, D. A. The multivariate reference range: an alternative interpretation of multi-test profiles. Clin. Chem. 28, 259–265 (1982).
Hughes, M. F. et al. Association of repeatedly measured high-sensitivity-assayed troponin I with cardiovascular disease events in a general population from the MORGAM/BiomarCaRE Study. Clin. Chem. 63, 334–342 (2017).
Schisterman, E. F. & Whitcomb, B. W. Use of the Social Security Administration Death Master File for ascertainment of mortality status. Popul. Health Metr. 2, 2 (2004).
Wu, P. et al. Mapping ICD-10 and ICD-10-CM codes to phecodes: workflow development and initial evaluation. JMIR Med. Inf. 7, e14325 (2019).
Birindelli, S. et al. Evaluation of long-term imprecision of automated complete blood cell count on the Sysmex XN-9000 system. Clin. Chem. Lab. Med. 55, e219–e222 (2017).
Xu, J., Murphy, S., Arias, E. & Kochanek, K. Deaths: Final Data for 2019 (National Center for Health Statistics, 2021); https://doi.org/10.15620/cdc:106058.
Polubriaginof, F. C. G. et al. Disease heritability inferred from familial relationships reported in medical records. Cell 173, 1692–1704.e11 (2018).
Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).
The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).
Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).
Speed, D., Holmes, J. & Balding, D. J. Evaluating and improving heritability models using summary statistics. Nat. Genet. 52, 458–462 (2020).
Speed, D. SNP heritability. https://dougspeed.com/snp-heritability/ (accessed 7 September 2023).
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31, 3555–3557 (2015).
This year will be remembered for many pioneering events, from the first private landing on…
The app brings together a task manager and habit tracker with a focus on your…
“I am not that familiar with investing, but currently educating myself about it.” Source link
Ki Sung: Traci Thomas, you read a lot of books, and in your podcast, you…
Meta apps and services like Instagram, Facebook, Threads and Messenger are still experience issues over…
When calculating startup costs, take a thorough, realistic approach. Start by listing every possible expense,…