Gnann, J. W. Jr & Whitley, R. J. Herpes simplex encephalitis: an update. Curr. Infect. Dis. Rep. 19, 13 (2017).
Messacar, K., Fischer, M., Dominguez, S. R., Tyler, K. L. & Abzug, M. J. Encephalitis in US children. Infect. Dis. Clin. North. Am. 32, 145–162 (2018).
Tyler, K. L. Acute viral encephalitis. N. Engl. J. Med. 379, 557–566 (2018).
Smith, M. G., Lennette, E. H. & Reames, H. R. Isolation of the virus of herpes simplex and the demonstration of intranuclear inclusions in a case of acute encephalitis. Am. J. Pathol. 17, 55–68 (1941).
Wolman, B. & Longson, M. Herpes encephalitis. Acta Paediatr. Scand. 66, 243–246 (1977).
Wertheim, J. O., Smith, M. D., Smith, D. M., Scheffler, K. & Kosakovsky Pond, S. L. Evolutionary origins of human herpes simplex viruses 1 and 2. Mol. Biol. Evol. 31, 2356–2364 (2014).
Rathbun, M. M. & Szpara, M. L. A holistic perspective on herpes simplex virus (HSV) ecology and evolution. Adv. Virus Res. 110, 27–57 (2021).
Wilson, T. M. et al. Fatal human alphaherpesvirus 1 infection in free-ranging black-tufted marmosets in anthropized environments, Brazil, 2012–2019. Emerg. Infect. Dis. 28, 802–811 (2022).
Smith, G. Herpesvirus transport to the nervous system and back again. Annu. Rev. Microbiol. 66, 153–176 (2012).
Swanson, P. A. 2nd & McGavern, D. B. Viral diseases of the central nervous system. Curr. Opin. Virol. 11, 44–54 (2015).
Whitley, R. J. Herpes simplex virus infections of the central nervous system. Continuum 21, 1704–1713 (2015).
Wang, H., Davido, D. J., Mostafa, H. H. & Morrison, L. A. Efficacy of an HSV-1 neuro-attenuated vaccine in mice is reduced by preventing viral DNA replication. Viruses 14, 869 (2022).
Elion, G. B. The biochemistry and mechanism of action of acyclovir. J. Antimicrob. Chemother. 12, 9–17 (1983).
Gnann, J. W. Jr, Barton, N. H. & Whitley, R. J. Acyclovir: mechanism of action, pharmacokinetics, safety and clinical applications. Pharmacotherapy 3, 275–283 (1983).
Campbell, M., Klapper, P. E. & Longson, M. Acyclovir in herpes encephalitis. Lancet 1, 38 (1982).
Stahl, J. P. & Mailles, A. Herpes simplex virus encephalitis update. Curr. Opin. Infect. Dis. 32, 239–243 (2019).
Whitley, R. J., Gnann J. W. in The Humanherpesviruses (ed. Whitley, R. J., Roizman, B. & Lopez, C.) 69–105 (Raven Press, 1993).
Whitley, R. J. Herpes simplex virus in children. Curr. Treat. Options Neurol. 4, 231–237 (2002).
Abel, L. et al. Age-dependent Mendelian predisposition to herpes simplex virus type 1 encephalitis in childhood. J. Pediatr. 157, 623–629 (2010). 629 e621.
Whitley, R. J. Herpes simplex encephalitis: adolescents and adults. Antiviral Res. 71, 141–148 (2006).
Jubelt, B., Mihai, C., Li, T. M. & Veerapaneni, P. Rhombencephalitis/brainstem encephalitis. Curr. Neurol. Neurosci. Rep. 11, 543–552 (2011).
George, B. P., Schneider, E. B. & Venkatesan, A. Encephalitis hospitalization rates and inpatient mortality in the United States, 2000–2010. PLoS ONE 9, e104169 (2014).
Hjalmarsson, A., Blomqvist, P. & Skoldenberg, B. Herpes simplex encephalitis in Sweden, 1990–2001: incidence, morbidity, and mortality. Clin. Infect. Dis. 45, 875–880 (2007).
Dagsdottir, H. M. et al. Herpes simplex encephalitis in Iceland 1987–2011. SpringerPlus 3, 524 (2014).
Casanova, J. L. From second thoughts on the germ theory to a full-blown host theory. Proc. Natl Acad. Sci. USA 120, e2301186120 (2023).
Casanova, J. L. & Abel, L. The microbe, the infection enigma, and the host. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev-micro-092123-022855 (2024).
Casanova, J. L. & Abel, L. Lethal infectious diseases as inborn errors of immunity: toward a synthesis of the germ and genetic theories. Annu. Rev. Pathol. 16, 23–50 (2021).
Tangye, S. G. & Latour, S. Primary immunodeficiencies reveal the molecular requirements for effective host defense against EBV infection. Blood 135, 644–655 (2020).
Beziat, V., Casanova, J. L. & Jouanguy, E. Human genetic and immunological dissection of papillomavirus-driven diseases: new insights into their pathogenesis. Curr. Opin. Virol. 51, 9–15 (2021).
Koskiniemi, M. et al. Familial herpes encephalitis. Lancet 346, 1553 (1995).
Gazquez, I., Jover, A., Puig, T., Vincente de Vera, C. & Rubio, M. Familial herpes encephalitis. Lancet 347, 910 (1996).
Jackson, A. C., Melanson, M. & Rossiter, J. P. Familial herpes simplex encephalitis. Ann. Neurol. 51, 406–407 (2002).
Lerner, A. M., Levine, D. P. & Reyes, M. P. Two cases of herpes simplex virus encephalitis in the same family. N. Engl. J. Med. 308, 1481 (1983).
Jouanguy, E. et al. Human inborn errors of immunity to herpes viruses. Curr. Opin. Immunol. 62, 106–122 (2020).
Tangye, S. G. et al. Human inborn errors of immunity: 2022 update on the classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 42, 1473–1507 (2022).
Bousfiha, A. et al. The 2022 update of IUIS phenotypical classification for human inborn errors of immunity. J. Clin. Immunol. 42, 1508–1520 (2022).
Dupuis, S. et al. Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency. Nat. Genet. 33, 388–391 (2003). Autosomal recessive STAT1 deficiency was discovered in children with mycobacterial diseases and severe viral infections, including HSE in one child.
Niehues, T. et al. A NEMO-deficient child with immunodeficiency yet without anhidrotic ectodermal dysplasia. J. Allergy Clin. Immunol. 114, 1456–1462 (2004).
Jouanguy, E. et al. Interferon-γ-receptor deficiency in an infant with fatal bacille Calmette–Guerin infection. N. Engl. J. Med. 335, 1956–1961 (1996).
Dupuis, S. et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 293, 300–303 (2001).
Chapgier, A. et al. Human complete Stat-1 deficiency is associated with defective type I and II IFN responses in vitro but immunity to some low virulence viruses in vivo. J. Immunol. 176, 5078–5083 (2006).
Zhang, S. Y. et al. Inborn errors of RNA lariat metabolism in humans with brainstem viral infection. Cell 172, 952–965.e918 (2018). Biallelic variants of the DBR1 debranching enzyme impairing RNA lariat metabolism and antiviral immunity were discovered in children with HSV-1, IBV or norovirus infections of the brainstem.
Lafaille, F. G. et al. Human SNORA31 variations impair cortical neuron-intrinsic immunity to HSV-1 and underlie herpes simplex encephalitis. Nat. Med. 25, 1873–1884 (2019). Autosomal dominant deficiency of snoRNA31 was found to underlie forebrain HSE, revealing the role of snoRNA in antiviral defence.
Le Voyer, T. et al. Genetic, immunological, and clinical features of 32 patients with autosomal recessive STAT1 deficiency. J. Immunol. 207, 133–152 (2021).
Doffinger, R. et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nat. Genet. 27, 277–285 (2001).
Puel, A. et al. The NEMO mutation creating the most-upstream premature stop codon is hypomorphic because of a reinitiation of translation. Am. J. Hum. Genet. 78, 691–701 (2006).
Audry, M. et al. NEMO is a key component of NF-κB- and IRF-3-dependent TLR3-mediated immunity to herpes simplex virus. J. Allergy Clin. Immunol. 128, 610–617 (2011).
Casrouge, A. et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314, 308–312 (2006). UNC93B1 was the first human gene identified to confer a predisposition to isolated HSE.
Tabeta, K. et al. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat. Immunol. 7, 156–164 (2006).
Brinkmann, M. M. et al. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J. Cell Biol. 177, 265–275 (2007).
Zhang, S. Y. et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317, 1522–1527 (2007). Autosomal dominant TLR3 deficiency was identified in unrelated children with HSE, suggesting a role for defects of the UNC93B1-dependent TLR3 signalling pathway.
Picard, C. et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003).
Ku, C. L. et al. IRAK4 and NEMO mutations in otherwise healthy children with recurrent invasive pneumococcal disease. J. Med. Genet. 44, 16–23 (2007).
von Bernuth, H. et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321, 691–696 (2008).
Picard, C. et al. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine 89, 403–425 (2010).
Garcia-Garcia, A. et al. Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia. J. Exp. Med. 220, e20220170–2023.
Guo, Y. et al. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J. Exp. Med. 208, 2083–2098 (2011).
Lim, H. K. et al. TLR3 deficiency in herpes simplex encephalitis: high allelic heterogeneity and recurrence risk. Neurology 83, 1888–1897 (2014).
Armangue, T. et al. Neurologic complications in herpes simplex encephalitis: clinical, immunological and genetic studies. Brain 146, 4306–4319 (2023).
Perez de Diego, R. et al. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 33, 400–411 (2010). Autosomal dominant TRAF3 deficiency was found to impair TLR3 responsiveness in fibroblasts, used as a surrogate cell model, and to underlie HSE.
Sancho-Shimizu, V. et al. Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J. Clin. Invest. 121, 4889–4902 (2011). Autosomal recessive and autosomal dominant TRIF deficiencies were identified in otherwise healthy children with HSE.
Herman, M. et al. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J. Exp. Med. 209, 1567–1582 (2012). Autosomal dominant TBK1 deficiency impairs TLR3-mediated type I interferon production in fibroblasts and underlies HSE in unrelated children.
Andersen, L. L. et al. Functional IRF3 deficiency in a patient with herpes simplex encephalitis. J. Exp. Med. 212, 1371–1379 (2015). Autosomal dominant IRF3 deficiency was identified in an otherwise healthy adolescent with HSE.
Yamamoto, M. et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol. 4, 1144–1150 (2003).
Yamamoto, M. et al. A novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672 (2002).
Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T. & Seya, T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat. Immunol. 4, 161–167 (2003).
Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).
Hoebe, K. et al. Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat. Immunol. 4, 1223–1229 (2003).
Casanova, J. L., Abel, L. & Quintana-Murci, L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu. Rev. Immunol. 29, 447–491 (2011).
Hoebe, K. & Beutler, B. TRAF3: a new component of the TLR-signaling apparatus. Trends Mol. Med. 12, 187–189 (2006).
Oganesyan, G. et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208–211 (2006).
Hacker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204–207 (2006).
Saha, S. K. et al. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J. 25, 3257–3263 (2006).
Pomerantz, J. L. & Baltimore, D. NF-κB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 18, 6694–6704 (1999).
Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).
Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015).
Bibert, S. et al. Herpes simplex encephalitis due to a mutation in an E3 ubiquitin ligase. Nat. Commun. 15, 3969 (2024).
Lim, H. K. et al. Severe influenza pneumonitis in children with inherited TLR3 deficiency. J. Exp. Med. 216, 2038–2056 (2019).
Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370, eabd4570 (2020).
Zhang, Q., Bastard, P., Effort, C. H. G., Cobat, A. & Casanova, J. L. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature 603, 587–598 (2022).
Zhang, P. et al. A computational approach for detecting physiological homogeneity in the midst of genetic heterogeneity. Am. J. Hum. Genet. 108, 1012–1025 (2021).
Uze, G., Lutfalla, G. & Gresser, I. Genetic transfer of a functional human interferon alpha receptor into mouse cells: cloning and expression of its cDNA. Cell 60, 225–234 (1990).
Piehler, J., Thomas, C., Garcia, K. C. & Schreiber, G. Structural and dynamic determinants of type I interferon receptor assembly and their functional interpretation. Immunol. Rev. 250, 317–334 (2012).
Lazear, H. M., Schoggins, J. W. & Diamond, M. S. Shared and distinct functions of type I and type III interferons. Immunity 50, 907–923 (2019).
Bastard, P. et al. Herpes simplex encephalitis in a patient with a distinctive form of inherited IFNAR1 deficiency. J. Clin. Invest. 131, e139980 (2021). Autosomal recessive complete IFNAR1 deficiency was found in a child with HSE, establishing the crucial role of type I interferon immunity in defence against HSV-1 infection of the human brain.
Hardy, M. P., Owczarek, C. M., Jermiin, L. S., Ejdeback, M. & Hertzog, P. J. Characterization of the type I interferon locus and identification of novel genes. Genomics 84, 331–345 (2004).
Yazdani, R. et al. Candidiasis associated with very early onset inflammatory bowel disease: first IL10RB deficient case from the National Iranian Registry and review of the literature. Clin. Immunol. 205, 35–42 (2019).
Korol, C. B. et al. Fulminant viral hepatitis in two siblings with inherited IL-10RB deficiency. J. Clin. Immunol. 43, 406–420 (2023).
Meyts, I. & Casanova, J. L. Viral infections in humans and mice with genetic deficiencies of the type I IFN response pathway. Eur. J. Immunol. 51, 1039–1061 (2021).
Bastard, P. et al. A loss-of-function IFNAR1 allele in Polynesia underlies severe viral diseases in homozygotes. J. Exp. Med. 219, e20220028 (2022).
Duncan, C. J. A. et al. Life-threatening viral disease in a novel form of autosomal recessive IFNAR2 deficiency in the Arctic. J. Exp. Med. 219, e20212427 (2022).
Ogishi, M. et al. Impaired IL-23-dependent induction of IFN-γ underlies mycobacterial disease in patients with inherited TYK2 deficiency. J. Exp. Med. 219, e20220094 (2022).
Bucciol, G. et al. Human inherited complete STAT2 deficiency underlies inflammatory viral diseases. J. Clin. Invest. 133, e168321 (2023).
Garcia-Morato, M. B. et al. Impaired control of multiple viral infections in a family with complete IRF9 deficiency. J. Allergy Clin. Immunol. 144, 309–312.e10.
Hernandez, N. et al. Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J. Exp. Med. 215, 2567–2585 (2018).
Bastard, P. et al. Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. J. Exp. Med. 218, e20202486 (2021).
Liu, H., Qiu, K., He, Q., Lei, Q. & Lu, W. Mechanisms of blood–brain barrier disruption in herpes simplex encephalitis. J. Neuroimmune Pharmacol. 14, 157–172 (2019).
Jacquemont, B. & Roizman, B. RNA synthesis in cells infected with herpes simplex virus: analysis of high molecular weight and symmetrical viral transcripts in herpesvirus infected cells. IARC Sci. Publ. 11, 39–48 (1975).
Weber, F., Wagner, V., Rasmussen, S. B., Hartmann, R. & Paludan, S. R. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol. 80, 5059–5064 (2006).
Hochrein, H. et al. Herpes simplex virus type-1 induces IFN-α production via Toll-like receptor 9-dependent and -independent pathways. Proc. Natl Acad. Sci. USA 101, 11416–11421 (2004).
Yum, S., Li, M., Fang, Y. & Chen, Z. J. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proc. Natl Acad. Sci. USA 118, e2100225118 (2021).
Chiang, J. J. et al. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nat. Immunol. 19, 53–62 (2018).
Naesens, L. et al. GTF3A mutations predispose to herpes simplex encephalitis by disrupting biogenesis of the host-derived RIG-I ligand RNA5SP141. Sci. Immunol. 7, eabq4531 (2022). Autosomal recessive TFIIIA deficiency impairs RIG-I-mediated type I interferon production during HSV-1 infection, thereby underlying HSE.
Casanova, J. L., Abel, L. & Quintana-Murci, l. Immunology taught by human genetics. Cold Spring Harb. Symp. Quant. Biol. 78, 157–172 (2013).
Casanova, J. L. & Abel, L. Inborn errors of immunity to infection: the rule rather than the exception. J. Exp. Med. 202, 197–201 (2005).
Casanova, J. L. & Abel, L. Primary immunodeficiencies: a field in its infancy. Science 317, 617–619 (2007).
Casanova, J. L. & Abel, L. The genetic theory of infectious diseases: brief history and selected illustrations. Annu. Rev. Genomics Hum. Genet. 14, 215–243 (2013).
Zhang, S. Y. et al. TLR3 immunity to infection in mice and humans. Curr. Opin. Immunol. 25, 19–33 (2013).
Lafaille, F. G. et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491, 769–773 (2012). Human TLR3- or UNC93B1-deficient patient-specific induced pluripotent stem cell-derived cortical neurons and oligodendrocytes were much more susceptible to HSV-1 than control cells, suggesting that TLR3–IFNα/β-mediated cortical neuron- and oligodendrocyte-autonomous anti-HSV-1 immunity is crucial for host defence against HSV-1 in the human forebrain.
Zimmer, B. et al. Human iPSC-derived trigeminal neurons lack constitutive TLR3-dependent immunity that protects cortical neurons from HSV-1 infection. Proc. Natl Acad. Sci. USA 115, E8775–E8782 (2018).
Chiaradia, I. & Lancaster, M. A. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat. Neurosci. 23, 1496–1508 (2020).
Fan, W., Christian, K. M., Song, H. & Ming, G. L. Applications of brain organoids for infectious diseases. J. Mol. Biol. 434, 167243 (2022).
Gao, D. et al. TLR3 controls constitutive IFN-β antiviral immunity in human fibroblasts and cortical neurons. J. Clin. Invest. 131, e134529 (2021). This study demonstrated that TLR3 restricts viral growth in human fibroblasts and cortical neurons in vitro, through the basal IFNβ immunity-mediated control of early viral infection rather than the virus recognition-triggered amplification of IFNα/β production.
Cavassani, K. A. et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J. Exp. Med. 205, 2609–2621 (2008).
Bernard, J. J. et al. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat. Med. 18, 1286–1290 (2012).
Kim, D. et al. Noncoding dsRNA induces retinoic acid synthesis to stimulate hair follicle regeneration via TLR3. Nat. Commun. 10, 2811 (2019).
Bsibsi, M. et al. The microtubule regulator stathmin is an endogenous protein agonist for TLR3. J. Immunol. 184, 6929–6937 (2010).
Gollmann-Tepekoylu, C. et al. Toll-like receptor 3 mediates aortic stenosis through a conserved mechanism of calcification. Circulation 147, 1518–1533 (2023).
Paludan, S. R. & Mogensen, T. H. Constitutive and latent immune mechanisms exert ‘silent’ control of virus infections in the central nervous system. Curr. Opin. Immunol. 72, 158–166 (2021).
Paludan, S. R., Pradeu, T., Masters, S. L. & Mogensen, T. H. Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat. Rev. Immunol. 21, 137–150 (2021).
Dorrity, T. J. et al. Long 3′UTRs predispose neurons to inflammation by promoting immunostimulatory double-stranded RNA formation. Sci. Immunol. 8, eadg2979 (2023).
Ma, Z., Ni, G. & Damania, B. Innate sensing of DNA virus genomes. Annu. Rev. Virol. 5, 341–362 (2018).
Liu, Z. et al. Encephalitis and poor neuronal death-mediated control of herpes simplex virus in human inherited RIPK3 deficiency. Sci Immunol 8, eade2860 (2023). Autosomal recessive RIPK3 deficiency confers a predisposition to HSE by impairing the cell death-dependent control of HSV-1 in cortical neurons independently of type I interferon immunity, providing proof of the principle that RIPK3-dependent cell death-mediated antiviral immunity is non-redundant.
Yu, P. W. et al. Identification of RIP3, a RIP-like kinase that activates apoptosis and NFκB. Curr. Biol. 9, 539–542 (1999).
He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111 (2009).
Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).
Newton, K. RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends Cell Biol. 25, 347–353 (2015).
Huang, Z. et al. RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. Cell Host Microbe 17, 229–242 (2015).
Nogusa, S. et al. RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza A virus. Cell Host Microbe 20, 13–24 (2016).
Jorjani, H. et al. An updated human snoRNAome. Nucleic Acids Res. 44, 5068–5082 (2016).
Kiss, A. M. Human Box H/ACA pseudouridylation guide RNA machinery. Mol. Cell. Biol. 24, 11 (2004).
Jenkinson, E. M. et al. Mutations in SNORD118 cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts. Nat. Genet. 48, 1185–1192 (2016).
Chan, Y. H. et al. SARS-CoV-2 brainstem encephalitis in human inherited DBR1 deficiency. J. Exp. Med. 221, e20231725 (2024).
Arenas, J. & Hurwitz, J. Purification of a RNA debranching activity from HeLa cells. J. Biol. Chem. 262, 4274–4279 (1987).
Ruskin, B. & Green, M. R. An RNA processing activity that debranches RNA lariats. Science 229, 135–140 (1985).
Nam, K., Lee, G., Trambley, J., Devine, S. E. & Boeke, J. D. Severe growth defect in a Schizosaccharomyces pombe mutant defective in intron lariat degradation. Mol. Cell. Biol. 17, 809–818 (1997).
Chapman, K. B. & Boeke, J. D. Isolation and characterization of the gene encoding yeast debranching enzyme. Cell 65, 483–492 (1991).
Nam, K. et al. Yeast lariat debranching enzyme. Substrate and sequence specificity. J. Biol. Chem. 269, 20613–20621 (1994).
Jacquier, A. & Rosbash, M. RNA splicing and intron turnover are greatly diminished by a mutant yeast branch point. Proc. Natl Acad. Sci. USA 83, 5835–5839 (1986).
Shamseldin, H. E. et al. A founder DBR1 variant causes a lethal form of congenital ichthyosis. Hum. Genet. 142, 1491–1498 (2023).
Ru, S. et al. Human DBR1 deficiency impairs stress granule-dependent PKR antiviral immunity. J. Exp. Med. https://doi.org/10.1084/jem.20240010 (2024).
Ooi, S. L., Samarsky, D. A., Fournier, M. J. & Boeke, J. D. Intronic snoRNA biosynthesis in Saccharomyces cerevisiae depends on the lariat-debranching enzyme: intron length effects and activity of a precursor snoRNA. RNA 4, 1096–1110 (1998).
Murray, J. L., Sheng, J. & Rubin, D. H. A role for H/ACA and C/D small nucleolar RNAs in viral replication. Mol. Biotechnol. 56, 429–437 (2014).
Sedger, L. M. microRNA control of interferons and interferon induced anti-viral activity. Mol. Immunol. 56, 781–793 (2013).
Han, B. et al. Human DBR1 modulates the recycling of snRNPs to affect alternative RNA splicing and contributes to the suppression of cancer development. Oncogene 36, 5382–5391 (2017).
Ulfendahl, P. J., Kreivi, J. P. & Akusjarvi, G. Role of the branch site/3′-splice site region in adenovirus-2 E1A pre-mRNA alternative splicing: evidence for 5′- and 3′-splice site co-operation. Nucleic Acids Res. 17, 925–938 (1989).
Plotch, S. J. & Krug, R. M. In vitro splicing of influenza viral NS1 mRNA and NS1-beta-globin chimeras: possible mechanisms for the control of viral mRNA splicing. Proc. Natl Acad. Sci. USA 83, 5444–5448 (1986).
Perng, G. C. & Jones, C. Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle. Interdiscip. Perspect. Infect. Dis. https://doi.org/10.1155/2010/262415 (2010).
Galvis, A. E., Fisher, H. E., Fan, H. & Camerini, D. Conformational changes in the 5′ end of the HIV-1 genome dependent on the debranching enzyme DBR1 during early stages of infection. J. Virol. 91, e01377-17 (2017).
Chan, Y. H. et al. Human TMEFF1 is a restriction factor for herpes simplex virus in the brain. Nature 632, 390–400 (2024). The characterization of autosomal recessive TMEFF1 deficiency in two children with HSE revealed a new mechanism of HSV-1-specific cell-intrinsic antiviral immunity of the human brain.
Eib, D. W. & Martens, G. J. A novel transmembrane protein with epidermal growth factor and follistatin domains expressed in the hypothalamo–hypophysial axis of Xenopus laevis. J. Neurochem. 67, 1047–1055 (1996).
Morais da Silva, S., Gates, P. B., Eib, D. W., Martens, G. J. & Brockes, J. P. The expression pattern of tomoregulin-1 in urodele limb regeneration and mouse limb development. Mech. Dev. 104, 125–128 (2001).
Eib, D. W. et al. Expression of the follistatin/EGF-containing transmembrane protein M7365 (tomoregulin-1) during mouse development. Mech. Dev. 97, 167–171 (2000).
Dai, Y. et al. TMEFF1 is a neuron-specific restriction factor for herpes simplex virus. Nature 632, 383–389 (2024). Human cell line in vitro and mouse in vivo studies provided further evidence that TMEFF1 is a HSV-1 restriction factor in neurons.
Connolly, S. A., Jackson, J. O., Jardetzky, T. S. & Longnecker, R. Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat. Rev. Microbiol. 9, 369–381 (2011).
Rajbhandari, L. et al. Nectin-1 is an entry mediator for varicella-zoster virus infection of human neurons. J. Virol. 95, e0122721 (2021).
Casanova, J. L. Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc. Natl Acad. Sci. USA 112, E7128–7137 (2015).
Puel, A., Bastard, P., Bustamante, J. & Casanova, J. L. Human autoantibodies underlying infectious diseases. J. Exp. Med. 219, e20211387 (2022).
Gervais, A. et al. Autoantibodies neutralizing type I IFNs underlie West Nile virus encephalitis in approximately 40% of patients. J. Exp. Med. 220, e20230661 (2023). Autoantibodies against type I interferons were found to underlie WNV encephalitis in 40% of the patients studied, making WNV encephalitis the best understood infectious disease to date.
Gervais, A. et al. Auto-Abs neutraliing type I IFNs underlie severe tick-borne encephalitis in ~10% of patients. J. Exp. Med. 221, e20240637 (2024).
Solomon, T. Flavivirus encephalitis. N. Engl. J. Med. 351, 370–378 (2004).
Abel, L. & Casanova, J. L. Human determinants of age-dependent patterns of infectious death. Immunity 57, 1457–1465 (2024).
Bibert, S. et al. Herpes simplex encephalitis in adult patients with MASP-2 deficiency. PLoS Pathog. 15, e1008168 (2019).
Hait, A. S. et al. Defects in LC3B2 and ATG4A underlie HSV2 meningitis and reveal a critical role for autophagy in antiviral defense in humans. Sci. Immunol. 5, eabc2691 (2020).
Casanova, J. L. et al. The ouroboros of autoimmunity. Nat. Immunol. 25, 743–754 (2024).
Chen, J. et al. Inborn errors of TLR3- or MDA5-dependent type I IFN immunity in children with enterovirus rhombencephalitis. J. Exp. Med. 218, e20211349 (2021).
Ogunjimi, B. et al. Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections. J. Clin. Invest. 127, 3543–3556 (2017).
Daza-Cajigal, V. et al. Partial human Janus kinase 1 deficiency predominantly impairs responses to interferon gamma and intracellular control of mycobacteria. Front. Immunol. 13, 888427 (2022).
Casanova, J. L. & Abel, L. From rare disorders of immunity to common determinants of infection: following the mechanistic thread. Cell 185, 3086–3103 (2022).
Zhang, S. Y. et al. Human inborn errors of immunity to infection affecting cells other than leukocytes: from the immune system to the whole organism. Curr. Opin. Immunol. 59, 88–100 (2019).
Casanova, J. L. & Abel, L. Mechanisms of viral inflammation and disease in humans. Science 374, 1080–1086 (2021).
Nathan, C. Rethinking immunology. Science 373, 276–277 (2021).
Gaudet, R. G. et al. A human apolipoprotein L with detergent-like activity kills intracellular pathogens. Science 373, eabf8113 (2021).
Zhang, S. Y., Harschnitz, O., Studer, L. & Casanova, J. L. Neuron-intrinsic immunity to viruses in mice and humans. Curr. Opin. Immunol. 72, 309–317 (2021).
Bastard, P. et al. Interferon-β therapy in a patient with incontinentia pigmenti and autoantibodies against type I IFNs infected with SARS-CoV-2. J. Clin. Immunol. 41, 931–933 (2021).
Wang, N. et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host Microbe 28, 455–464.e452 (2020).
Pereda, R. et al. Therapeutic effectiveness of interferon alpha 2b treatment for COVID-19 patient recovery. J. Interferon Cytokine Res. 40, 578–588 (2020).
Mancini, M. & Vidal, S. M. Insights into the pathogenesis of herpes simplex encephalitis from mouse models. Mamm. Genome 29, 425–445 (2018).
Wang, J. P. et al. Role of specific innate immune responses in herpes simplex virus infection of the central nervous system. J. Virol. 86, 2273–2281 (2012).
Sancho-Shimizu, V. et al. Genetic susceptibility to herpes simplex virus 1 encephalitis in mice and humans. Curr. Opin. Allergy Clin. Immunol. 7, 495–505 (2007).
Lopez, C. Genetics of natural resistance to herpesvirus infections in mice. Nature 258, 152–153 (1975).
Lopez, C. Resistance to HSV-1 in the mouse is governed by two major, independently segregating, non-H-2 loci. Immunogenetics 11, 87–92 (1980).
Cantin, E., Tanamachi, B., Openshaw, H., Mann, J. & Clarke, K. Gamma interferon (IFN-γ) receptor null-mutant mice are more susceptible to herpes simplex virus type 1 infection than IFN-γ ligand null-mutant mice. J. Virol. 73, 5196–5200 (1999).
Sato, R. et al. Combating herpesvirus encephalitis by potentiating a TLR3–mTORC2 axis. Nat. Immunol. 19, 1071–1082 (2018).
Reinert, L. S. et al. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. J. Clin. Invest. 122, 1368–1376 (2012).
Orvedahl, A. & Levine, B. Autophagy and viral neurovirulence. Cell Microbiol. 10, 1747–1756 (2008).
Yordy, B., Iijima, N., Huttner, A., Leib, D. & Iwasaki, A. A neuron-specific role for autophagy in antiviral defense against herpes simplex virus. Cell Host Microbe 12, 334–345 (2012).
Katzenell, S. & Leib, D. A. Herpes simplex virus and interferon signaling induce novel autophagic clusters in sensory neurons. J. Virol. 90, 4706–4719 (2016).
The standout feature is the ability to create and stricter your ideas into a beautiful…
Monster Energy congratulates team rider Ayumu Hirano on claiming first place in the Men's Snowboard…
© 2024 Fortune Media IP Limited. All Rights Reserved. Use of this site constitutes acceptance…
A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…
Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…
15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…