Categories: NATURE

Frontostriatal salience network expansion in individuals in depression


  • Winter, N. R. et al. Quantifying deviations of brain structure and function in major depressive disorder across neuroimaging modalities. JAMA Psychiatry 79, 879–888 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laumann, T. O. et al. Functional system and areal organization of a highly sampled individual human brain. Neuron 87, 657–670 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gordon, E. M. et al. Precision functional mapping of individual human brains. Neuron 95, 791–807 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braga, R. M. & Buckner, R. L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95, 457–471 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duman, R. S. & Aghajanian, G. K. Synaptic dysfunction in depression: potential therapeutic targets. Science 338, 68–72 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duman, R. S., Aghajanian, G. K., Sanacora, G. & Krystal, J. H. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat. Med. 22, 238–249 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lui, S. et al. Resting-state functional connectivity in treatment-resistant depression. Am. J. Psychiatry 168, 642–648 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, L. M. Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiatry 3, 472–480 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drysdale, A. T. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23, 28–38 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murray, C. J. L. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Parcellating cortical functional networks in individuals. Nat. Neurosci. 18, 1853–1860 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poldrack, R. A. et al. Long-term neural and physiological phenotyping of a single human. Nat. Commun. 6, 8885 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fedorenko, E. The early origins and the growing popularity of the individual-subject analytic approach in human neuroscience. Curr. Opin. Behav. Sci. 40, 105–112 (2021).

    Article 

    Google Scholar
     

  • Naselaris, T., Allen, E. & Kay, K. Extensive sampling for complete models of individual brains. Curr. Opin. Behav. Sci. 40, 45–51 (2021).

    Article 

    Google Scholar
     

  • Seitzman, B. A. et al. Trait-like variants in human functional brain networks. Proc. Natl Acad. Sci. USA 116, 22851–22861 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kraus, B. T. et al. Network variants are similar between task and rest states. Neuroimage 229, 117743 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gratton, C. et al. Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron 98, 439–452 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch, C. J. et al. Rapid precision functional mapping of individuals using Multi-Echo fMRI. Cell Rep. 33, 108540 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dworetsky, A. et al. Two common and distinct forms of variation in human functional brain networks. Nat. Neurosci. 27, 1187–1198 (2024).

  • Anderson, K. M. et al. Heritability of individualized cortical network topography. Proc. Natl Acad. Sci. USA 118, e2016271118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parsons, S. & McCormick, E. M. Limitations of two time point data for understanding individual differences in longitudinal modeling—what can difference reveal about change? Dev. Cogn. Neurosci. 66, 101353 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kraus, B. et al. Insights from personalized models of brain and behavior for identifying biomarkers in psychiatry. Neurosci. Biobehav. Rev. 152, 105259 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sendi, M. S. E. et al. Intraoperative neural signals predict rapid antidepressant effects of deep brain stimulation. Transl. Psychiatry 11, 551 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laumann, T. O. et al. Brain network reorganisation in an adolescent after bilateral perinatal strokes. Lancet Neurol. 20, 255–256 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Dohm, K., Redlich, R., Zwitserlood, P. & Dannlowski, U. Trajectories of major depression disorders: a systematic review of longitudinal neuroimaging findings. Aust. NZ J. Psychiatry 51, 441–454 (2017).

    Article 

    Google Scholar
     

  • Brady, R. O. et al. Bipolar mood state reflected in cortico-amygdala resting state connectivity: a cohort and longitudinal study. J. Affect. Disord. 217, 205–209 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rey, G. et al. Dynamics of amygdala connectivity in bipolar disorders: a longitudinal study across mood states. Neuropsychopharmacology 46, 1693–1701 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scangos, K. W. et al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat. Med. 27, 1696–1700 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alagapan, S. et al. Cingulate dynamics track depression recovery with deep brain stimulation. Nature 622, 130–138 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kundu, P. et al. Multi-echo fMRI: a review of applications in fMRI denoising and analysis of BOLD signals. Neuroimage 154, 59–80 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Mayberg, H. S. et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am. J. Psychiatry 156, 675–682 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ressler, K. J. & Mayberg, H. S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat. Neurosci. 10, 1116–1124 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry 72, 603–611 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmaal, L. et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry 22, 900–909 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crowell, A. L. et al. Long-term outcomes of subcallosal cingulate deep brain stimulation for treatment-resistant depression. Am. J. Psychiatry 176, 949–956 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23, 56–62 (1960).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seeley, W. W. The salience network: a neural system for perceiving and responding to homeostatic demands. J. Neurosci. 39, 9878–9882 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dosenbach, N. U. F., Raichle, M. E. & Gordon, E. M. The brain’s cingulo-opercular action-mode network. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/2vt79 (2024).

  • Kong, R. et al. Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb. Cortex 29, 2533–2551 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Haber, S. N. & Knutson, B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35, 4–26 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Shepherd, G. M. G. Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci. 14, 278–291 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gordon, E. M. et al. Individualized functional subnetworks connect human striatum and frontal cortex. Cereb. Cortex 32, 2868–2884 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Blumberger, D. M. et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. Lancet 391, 1683–1692 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Dworetsky, A. et al. Two common and distinct forms of variation in human functional brain networks. Nat. Neurosci. https://doi.org/10.1038/s41593-024-01618-2 (2024).

  • Krubitzer, L. A. & Seelke, A. M. H. Cortical evolution in mammals: the bane and beauty of phenotypic variability. Proc. Natl Acad. Sci. USA 109, 10647–10654 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X.-J. Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat. Rev. Neurosci. 21, 169–178 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markello, R. D. et al. neuromaps: structural and functional interpretation of brain maps. Nat. Methods 19, 1472–1479 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glasser, M. F., Goyal, M. S., Preuss, T. M., Raichle, M. E. & Van Essen, D. C. Trends and properties of human cerebral cortex: correlations with cortical myelin content. Neuroimage 93, 165–175 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mueller, S. et al. Individual variability in functional connectivity architecture of the human brain. Neuron 77, 586–595 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turtonen, O. et al. Adult attachment system links with brain mu opioid receptor availability in vivo. Biol. Psychiat. Cogn. Neurosci. Neuroimaging 6, 360–369 (2021).


    Google Scholar
     

  • Gallezot, J.-D. et al. Kinetic modeling of the serotonin 5-HT(1B) receptor radioligand [(11)C]P943 in humans. J. Cereb. Blood Flow Metab. 30, 196–210 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Post, R. M. et al. Morbidity in 258 bipolar outpatients followed for 1 year with daily prospective ratings on the NIMH life chart method. J. Clin. Psychiatry 64, 680–690 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Malhi, G. S. & Mann, J. Depression. Lancet 392, 2299–2312 https://doi.org/10.1016/s0140-6736(18)31948-2 (2018).

  • Casey, B. J. et al. The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kennerley, S. W., Walton, M. E., Behrens, T. E. J., Buckley, M. J. & Rushworth, M. F. S. Optimal decision making and the anterior cingulate cortex. Nat. Neurosci. 9, 940–947 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rushworth, M. F. S. & Behrens, T. E. J. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat. Neurosci. 11, 389–397 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim, B. K., Huang, K. W., Grueter, B. A., Rothwell, P. E. & Malenka, R. C. Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature 487, 183–189 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russo, S. J. & Nestler, E. J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 14, 609–625 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tye, K. M. et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493, 537–541 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pizzagalli, D. A. Depression, stress, and anhedonia: toward a synthesis and integrated model. Annu. Rev. Clin. Psychol. 10, 393–423 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, D., Seo, H. & Jung, M. W. Neural basis of reinforcement learning and decision making. Annu. Rev. Neurosci. 35, 287–308 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruff, C. C. & Fehr, E. The neurobiology of rewards and values in social decision making. Nat. Rev. Neurosci. 15, 549–562 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fetcho, R. N. et al. A stress-sensitive frontostriatal circuit supporting effortful reward-seeking behavior. Neuron 112, 473–487 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hart, E. E., Stolyarova, A., Conoscenti, M. A., Minor, T. R. & Izquierdo, A. Rigid patterns of effortful choice behavior after acute stress in rats. Stress 20, 19–28 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Quilodran, R., Rothé, M. & Procyk, E. Behavioral shifts and action valuation in the anterior cingulate cortex. Neuron 57, 314–325 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prévost, C., Pessiglione, M., Météreau, E., Cléry-Melin, M.-L. & Dreher, J.-C. Separate valuation subsystems for delay and effort decision costs. J. Neurosci. 30, 14080–14090 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newbold, D. J. & Dosenbach, N. U. F. Tracking plasticity of individual human brains. Curr. Opin. Behav. Sci. 40, 161–168 (2021).

    Article 

    Google Scholar
     

  • Siddiqi, S. H. et al. Distinct symptom-specific treatment targets for circuit-based neuromodulation. Brain Stim. 12, e138 https://doi.org/10.1016/j.brs.2019.03.052 (2019).

  • Terasawa, Y., Shibata, M., Moriguchi, Y. & Umeda, S. Anterior insular cortex mediates bodily sensibility and social anxiety. Soc. Cogn. Affect. Neurosci. 8, 259–266 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Gogolla, N. The insular cortex. Curr. Biol. 27, R580–R586 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, H. et al. A genetically defined insula-brainstem circuit selectively controls motivational vigor. Cell 184, 6344–6360 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicolas, C. et al. Linking emotional valence and anxiety in a mouse insula–amygdala circuit. Nat. Commun. 14, 5073 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsueh, B. et al. Cardiogenic control of affective behavioural state. Nature 615, 292–299 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Article 

    Google Scholar
     

  • Karni, A. et al. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377, 155–158 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Taubert, M., Mehnert, J., Pleger, B. & Villringer, A. Rapid and specific gray matter changes in M1 induced by balance training. Neuroimage 133, 399–407 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, X. J. et al. Somatotopic reorganization of hand representation in bilateral arm amputees with or without special foot movement skill. Brain Res. 1546, 9–17 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hahamy, A. et al. Representation of multiple body parts in the missing-hand territory of congenital one-handers. Curr. Biol. 27, 1350–1355 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakagawa, K., Takemi, M., Nakanishi, T., Sasaki, A. & Nakazawa, K. Cortical reorganization of lower-limb motor representations in an elite archery athlete with congenital amputation of both arms. Neuroimage Clin. 25, 102144 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Schwarzkopf, D. S., Song, C. & Rees, G. The surface area of human V1 predicts the subjective experience of object size. Nat. Neurosci. 14, 28–30 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Himmelberg, M. M., Winawer, J. & Carrasco, M. Linking individual differences in human primary visual cortex to contrast sensitivity around the visual field. Nat. Commun. 13, 3309 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, Z. et al. Individual variation in functional topography of association networks in youth. Neuron 106, 340–353 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cadwell, C. R., Bhaduri, A., Mostajo-Radji, M. A., Keefe, M. G. & Nowakowski, T. J. Development and arealization of the cerebral cortex. Neuron 103, 980–1004 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Leary, D. D. & Sahara, S. Genetic regulation of arealization of the neocortex. Curr. Opin. Neurobiol. 18, 90–100 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamasaki, T., Leingärtner, A., Ringstedt, T. & O’Leary, D. D. M. EMX2 regulates sizes and positioning of the primary sensory and motor areas in neocortex by direct specification of cortical progenitors. Neuron 43, 359–372 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leingärtner, A. et al. Cortical area size dictates performance at modality-specific behaviors. Proc. Natl Acad. Sci. USA 104, 4153–4158 (2007).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez, I. et al. Heritable functional architecture in human visual cortex. Neuroimage 239, 118286 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Whitton, A. E., Treadway, M. T. & Pizzagalli, D. A. Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr. Opin. Psychiatry 28, 7 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch, C. J. et al. Automated optimization of TMS coil placement for personalized functional network engagement. Neuron https://doi.org/10.1016/j.neuron.2022.08.012 (2022).

  • Cash, R. F. H. & Zalesky, A. Personalized and circuit-based transcranial magnetic stimulation: evidence, controversies, and opportunities. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2023.11.013 (2023).

  • Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 https://doi.org/10.1152/jn.00338.2011 (2011).

  • Kwon, Y. et al. Situating the parietal memory network in the context of multiple parallel distributed networks using high-resolution functional connectivity. Preprint at bioRxiv https://doi.org/10.1101/2023.08.16.553585 (2023).

  • Uddin, L. Q. et al. Controversies and progress on standardization of large-scale brain network nomenclature. Netw. Neurosci 7, 864–905 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newbold, D. J. et al. Plasticity and spontaneous activity pulses in disused human brain circuits. Neuron 107, 580–589 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allen, E. J. et al. A massive 7 T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Nat. Neurosci. 25, 116–126 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moia, S. et al. ICA-based denoising strategies in breath-hold induced cerebrovascular reactivity mapping with multi echo BOLD fMRI. Neuroimage 233, 117914 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kundu, P. et al. Integrated strategy for improving functional connectivity mapping using multiecho fMRI. Proc. Natl Acad. Sci. USA 110, 16187–16192 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DuPre, E. et al. TE-dependent analysis of multi-echo fMRI with tedana. J. Open Source Softw. 6, 3669 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Griffanti, L. et al. Hand classification of fMRI ICA noise components. Neuroimage 154, 188–205 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Power, J. D. et al. Distinctions among real and apparent respiratory motions in human fMRI data. Neuroimage 201, 116041 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Marcus, D. S. et al. Human Connectome Project informatics: quality control, database services, and data visualization. Neuroimage 80, 202–219 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Rosvall, M. & Bergstrom, C. T. Maps of random walks on complex networks reveal community structure. Proc. Natl Acad. Sci. USA 105, 1118–1123 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gordon, E. M. et al. Default-mode network streams for coupling to language and control systems. Proc. Natl Acad. Sci. USA 117, 17308–17319 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Domenico, M., Lancichinetti, A., Arenas, A. & Rosvall, M. Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Phys. Rev. X 5, 011027 (2015).


    Google Scholar
     

  • Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).

    Article 

    Google Scholar
     

  • Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Snaith, R. P. et al. A scale for the assessment of hedonic tone the Snaith–Hamilton pleasure scale. Br. J. Psychiatry 167, 99–103 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Apple’s latest iPad Mini is down to its lowest price to date

    If you’re in the market for a highly portable tablet, Apple’s smallest tablet has fallen…

    1 day ago

    Sick Day | Cup of Jo

    Crikey, 100% of Cup of Jo teammates have sick children at home today — colds,…

    1 day ago

    The Financial Freedom Formula Has Changed (2025 Update)

    Can you still achieve financial freedom with real estate investing? Around a decade ago, it…

    1 day ago

    Meta allowed pornographic ads that break its content moderation rules

    Meta owns social media platforms including Facebook and InstagramJRdes / Shutterstock In 2024, Meta allowed…

    1 day ago

    TapTap Mind Provides a Self-Directed Meditation Experience with Apple Watch Double Tap

    Only available for a compatible Apple Watch with Double Tap, the app allow you to…

    1 day ago

    The risk of dementia is even worse than we thought, new research says

    The lifetime risk of dementia after age 55 is double previous estimates. Source link

    1 day ago