Categories: NATURE

Efficient green InP-based QD-LED by controlling electron injection and leakage


  • Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chao, W.-C. et al. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Commun. Mater. 2, 96 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Q. et al. Quasi‐shell‐growth strategy achieves stable and efficient green InP quantum dot light‐emitting diodes. Adv. Sci. 9, 2200959 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Coe, S., Woo, W.-K., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Deng, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photon. 16, 505–511 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, H. et al. Dipole–dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes. Nat. Photon. 18, 186–191 (2024).

  • Meng, T. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photon. 16, 297–303 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dai, X., Deng, Y., Peng, X. & Jin, Y. Quantum‐dot light‐emitting diodes for large‐area displays: towards the dawn of commercialization. Adv. Mater. 29, 1607022 (2017).

    Article 

    Google Scholar
     

  • Madelung, O. Semiconductors: Group IV Elements and III-V Compounds (Springer Science & Business Media, 2012).

  • Yu, P. et al. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Light Sci. Appl. 11, 162 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, B., Tang, B., Fan, F. & Du, J. Transient absorption spectrometer using excitation by pulse current. CN Patent CN112683797B (2021).

  • Gao, Y. et al. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting. Nat. Nanotechnol. 18, 1168–1174 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Klimov, V. I., Mikhailovsky, A. A., McBranch, D., Leatherdale, C. A. & Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011–1013 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 104, 6112–6123 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Livache, C. et al. High-efficiency photoemission from magnetically doped quantum dots driven by multi-step spin-exchange Auger ionization. Nat. Photon. 16, 433–440 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Karpov, S. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a review. Opt. Quantum Electron. 47, 1293–1303 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ishioka, K., Barker, B. G. Jr, Yanagida, M., Shirai, Y. & Miyano, K. Direct observation of ultrafast hole injection from lead halide perovskite by differential transient transmission spectroscopy. J. Phys. Chem. Lett. 8, 3902–3907 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, K., East, J. R. & Haddad, G. I. Numerical modeling of abrupt heterojunctions using a thermionic-field emission boundary condition. Solid State Electron. 36, 321–330 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Walker, A., Kambili, A. & Martin, S. Electrical transport modelling in organic electroluminescent devices. J. Phys. Condens. Matter 14, 9825 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jung, S.-M. et al. Modelling charge transport and electro-optical characteristics of quantum dot light-emitting diodes. npj Comput. Mater. 7, 122 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Burrows, P. & Forrest, S. Electroluminescence from trap‐limited current transport in vacuum deposited organic light emitting devices. Appl. Phys. Lett. 64, 2285–2287 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Scholz, S., Kondakov, D., Lussem, B. & Leo, K. Degradation mechanisms and reactions in organic light-emitting devices. Chem. Rev. 115, 8449–8503 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mude, N. N., Khan, Y., Thuy, T. T., Walker, B. & Kwon, J. H. Stable ZnS electron transport layer for high-performance inverted cadmium-free quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 14, 55925–55932 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. High-efficiency green InP quantum dot-based electroluminescent device comprising thick-shell quantum dots. Adv. Opt. Mater. 7, 1801602 (2019).

    Article 

    Google Scholar
     

  • Moon, H. et al. Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes. Chem. Commun. 55, 13299–13302 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Iwasaki, Y., Motomura, G., Ogura, K. & Tsuzuki, T. Efficient green InP quantum dot light-emitting diodes using suitable organic electron-transporting materials. Appl. Phys. Lett. 117, 111104 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gao, P., Zhang, Y., Qi, P. & Chen, S. Efficient InP green quantum-dot light-emitting diodes based on organic electron transport layer. Adv. Opt. Mater. 10, 2202066 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, L. et al. Efficient and bright green InP quantum dot light-emitting diodes enabled by a self-assembled dipole interface monolayer. Nanoscale 15, 2837–2842 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, T. et al. Understanding and hindering the electron leakage in green InP quantum-dot light-emitting diodes. Adv. Photon. Res. 4, 2300146 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Q. et al. Bridging chloride anions enables efficient and stable InP green quantum-dot light-emitting diodes. Adv. Opt. Mater. 11, 2300659 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shin, S. et al. Fluoride-free synthesis strategy for luminescent InP cores and effective shelling processes via combinational precursor chemistry. Chem. Eng. J. 466, 143223 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L., Fan, Z., Liu, D., Zhang, Z. & Zou, B. Modified charge injection in green InP quantum dot light-emitting diodes utilizing a plasma-enhanced NiO buffer layer. J. Phys. Chem. C 128, 3985–3993 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Electric dipole modulation for boosting carrier recombination in green InP QLEDs under strong electron injection. Nanoscale Adv. 5, 385–392 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Boosting the efficiency and stability of green InP quantum dot light emitting diodes by interface dipole modulation. J. Mater. Chem. C 10, 8192 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Taylor, D. A. et al. Importance of surface functionalization and purification for narrow FWHM and bright green-emitting InP core-multishell quantum dots via a two-step growth process. Chem. Mater. 33, 4399–4407 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hunsche, S., Dekorsy, T., Klimov, V. & Kurz, H. Ultrafast dynamics of carrier-induced absorption changes in highly-excited CdSe nanocrystals. Appl. Phys. B 62, 3–10 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Kumar, B., Campbell, S. A. & Paul Ruden, P. Modeling charge transport in quantum dot light emitting devices with NiO and ZnO transport layers and Si quantum dots. J. Appl. Phys. 114, 044507 (2013).

  • Gao, X. & Yee, S. S. Hole capture cross section and emission coefficient of defect centers related to high-field-induced positive charges in SiO2 layers. Solid State Electron. 39, 399–403 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bian, Y. et al. Datasets for ‘Efficient green InP-based QD-LED by controlling electron injection and leakage’. Figshare https://doi.org/10.6084/m9.figshare.27682983 (2024).

  • Lee, T. et al. Highly efficient and bright inverted top-emitting InP quantum dot light-emitting diodes introducing a hole-suppressing interlayer. Small 15, 1905162 (2019).

  • Kim, J. et al. Realization of highly efficient InP quantum dot light-emitting diodes through in-depth investigation of exciton-harvesting layers. Adv. Opt. Mater. 11, 2300088 (2023).

  • Lee, S. H. et al. ZnSeTe quantum dots as an alternative to InP and their high-efficiency electroluminescence. Chem. Mater. 32, 5768–5775 (2020).

  • Yoon, S. Y. et al. Highly emissive green ZnSeTe quantum dots: effects of core size on their optical properties and comparison with InP counterparts. ACS Energy Lett. 8, 1131–1140 (2023).

  • Sun, L. et al. Efficient and stable multi‐color emissions of the coumarin modified Cs3LnCl6 lead‐free perovskite nanocrystals and led application. Adv. Mater. 36, 2310065 (2024).



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Note-Taking App Craft Updated With New Task Management Features and More

    The standout feature is the ability to create and stricter your ideas into a beautiful…

    3 hours ago

    Monster Energy’s Ayumu Hirano Claims Victory in Men’s Snowboard Halfpipe at the FIS World Cup at Copper Mountain

    Monster Energy congratulates team rider Ayumu Hirano on claiming first place in the Men's Snowboard…

    3 hours ago

    Mother of all bubbles: This is America’s ‘fatal flaw,’ expert says

    © 2024 Fortune Media IP Limited. All Rights Reserved. Use of this site constitutes acceptance…

    4 hours ago

    Qualcomm wins a legal battle over Arm chip licensing

    A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…

    2 days ago

    Three Comic/Movie/Band Reviews | Cup of Jo

    Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…

    2 days ago

    Actually, Flipping Properties Can Improve Housing Affordability—Here’s How

    15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…

    2 days ago