Categories: NATURE

Dopamine dynamics are dispensable for movement but promote reward responses


  • Liu, C., Goel, P. & Kaeser, P. S. Spatial and temporal scales of dopamine transmission. Nat. Rev. Neurosci. 22, 345–358 (2021).

    Article 

    Google Scholar
     

  • Grace, A. A. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat. Rev. Neurosci. 17, 524–532 (2016).

    Article 
    CAS 

    Google Scholar
     

  • da Silva, J. A., Tecuapetla, F., Paixao, V. & Costa, R. M. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature 554, 244–248 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Howe, M. W. & Dombeck, D. A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 535, 505–510 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dodson, P. D. et al. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism. Proc. Natl Acad. Sci. USA 113, E2180–E2188 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Jin, X. & Costa, R. M. Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466, 457–462 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Berke, J. D. What does dopamine mean? Nat. Neurosci. https://doi.org/10.1038/s41593-018-0152-y (2018).

  • Coddington, L. T. & Dudman, J. T. Learning from action: reconsidering movement signaling in midbrain dopamine neuron activity. Neuron 104, 63–77 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H. R. et al. A unified framework for dopamine signals across timescales. Cell 183, 1600–1616.e25 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Amo, R. et al. A gradual temporal shift of dopamine responses mirrors the progression of temporal difference error in machine learning. Nat. Neurosci. 25, 1082–1092 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Watabe-Uchida, M., Eshel, N. & Uchida, N. Neural circuitry of reward prediction error. Annu. Rev. Neurosci. 40, 373–394 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Primers 3, 17013 (2017).

    Article 

    Google Scholar
     

  • Cotzias, G. C., Van Woert, M. H. & Schiffer, L. M. Aromatic amino acids and modification of parkinsonism. N. Engl. J. Med. 276, 374–379 (1967).

    Article 
    CAS 

    Google Scholar
     

  • Carlsson, A. A paradigm shift in brain research. Science 294, 1021–1024 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carlsson, A. On the problem of the mechanism of action of some psychopharmaca. Psychiatr. Neurol. 140, 220–222 (1960).

    Article 
    CAS 

    Google Scholar
     

  • Bakhurin, K. et al. Force tuning explains changes in phasic dopamine signaling during stimulus-reward learning. Preprint at bioRxiv https://doi.org/10.1101/2023.04.23.537994 (2023).

  • Jeong, H. et al. Mesolimbic dopamine release conveys causal associations. Science 378, eabq6740 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Berridge, K. C., Robinson, T. E. & Aldridge, J. W. Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr. Opin. Pharmacol. 9, 65–73 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Niv, Y., Daw, N. D., Joel, D. & Dayan, P. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology 191, 507–520 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Hamilos, A. E. et al. Slowly evolving dopaminergic activity modulates the moment-to-moment probability of reward-related self-timed movements. eLife 10, e62583 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mohebi, A. et al. Dissociable dopamine dynamics for learning and motivation. Nature 570, 65–70 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Howe, M. et al. Coordination of rapid cholinergic and dopaminergic signaling in striatum during spontaneous movement. eLife 8, e44903 (2019).

    Article 

    Google Scholar
     

  • Yagishita, S. et al. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science 345, 1616–1620 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Crego, A. C. G. et al. Complementary control over habits and behavioral vigor by phasic activity in the dorsolateral striatum. J. Neurosci. 40, 2139–2153 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bova, A. et al. Precisely timed dopamine signals establish distinct kinematic representations of skilled movements. eLife 9, e61591 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Howard, C. D., Li, H., Geddes, C. E. & Jin, X. Dynamic nigrostriatal dopamine biases action selection. Neuron 93, 1436–1450.e8 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C. et al. An action potential initiation mechanism in distal axons for the control of dopamine release. Science 375, 1378–1385 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sun, F. et al. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat. Methods 17, 1156–1166 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Patriarchi, T. et al. An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat. Methods 17, 1147–1155 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C., Kershberg, L., Wang, J., Schneeberger, S. & Kaeser, P. S. Dopamine secretion is mediated by sparse active zone-like release sites. Cell 172, 706–718.e15 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Banerjee, A. et al. Molecular and functional architecture of striatal dopamine release sites. Neuron 110, 248–265.e9 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Robinson, B. G. et al. RIM is essential for stimulated but not spontaneous somatodendritic dopamine release in the midbrain. eLife 8, e47972 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zych, S. M. & Ford, C. P. Divergent properties and independent regulation of striatal dopamine and GABA co-transmission. Cell Rep. 39, 110823 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Parker, J. G. et al. Absence of NMDA receptors in dopamine neurons attenuates dopamine release but not conditioned approach during Pavlovian conditioning. Proc. Natl Acad. Sci. USA 107, 13491–13496 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zweifel, L. S. et al. Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proc. Natl Acad. Sci. USA 106, 7281–7288 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grace, A. A. & Bunney, B. S. The control of firing pattern in nigral dopamine neurons: burst firing. J. Neurosci. 4, 2877–2890 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Grace, A. A. & Bunney, B. S. The control of firing pattern in nigral dopamine neurons: single spike firing. J. Neurosci. 4, 2866–2876 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Banerjee, A., Lee, J., Nemcova, P., Liu, C. & Kaeser, P. S. Synaptotagmin-1 is the Ca2+ sensor for fast striatal dopamine release. eLife 9, e58359 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ungerstedt, U. Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol. Scand. Suppl. 367, 69–93 (1971).

    Article 
    CAS 

    Google Scholar
     

  • Keefe, K. A., Salamone, J. D., Zigmond, M. J. & Stricker, E. M. Paradoxical kinesia in parkinsonism is not caused by dopamine release. Studies in an animal model. Arch. Neurol. 46, 1070–1075 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Lebowitz, J. J. et al. Synaptotagmin-1 is a Ca2+ sensor for somatodendritic dopamine release. Cell Rep. 42, 111915 (2023).

    Article 
    CAS 

    Google Scholar
     

  • German, P. W. & Fields, H. L. Rat nucleus accumbens neurons persistently encode locations associated with morphine reward. J. Neurophysiol. 97, 2094–2106 (2007).

    Article 

    Google Scholar
     

  • Tsutsui-Kimura, I. et al. Distinct temporal difference error signals in dopamine axons in three regions of the striatum in a decision-making task. eLife 9, e62390 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Berridge, C. W., Stratford, T. L., Foote, S. L. & Kelley, A. E. Distribution of dopamine β-hydroxylase-like immunoreactive fibers within the shell subregion of the nucleus accumbens. Synapse 27, 230–241 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Schroeter, S. et al. Immunolocalization of the cocaine- and antidepressant-sensitive l-norepinephrine transporter. J. Comp. Neurol. 420, 211–232 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Antonini, A. et al. Effect of levodopa–carbidopa intestinal gel on dyskinesia in advanced Parkinson’s disease patients. Mov. Disord. 31, 530–537 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Flagel, S. B. et al. A selective role for dopamine in stimulus-reward learning. Nature 469, 53–57 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dolan, R. J. & Dayan, P. Goals and habits in the brain. Neuron 80, 312–325 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. X. et al. Prefrontal cortex as a meta-reinforcement learning system. Nat. Neurosci. 21, 860–868 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, A. Y., Miura, K. & Uchida, N. The dorsomedial striatum encodes net expected return, critical for energizing performance vigor. Nat. Neurosci. 16, 639–647 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Dudman, J. T. & Krakauer, J. W. The basal ganglia: from motor commands to the control of vigor. Curr. Opin. Neurobiol. 37, 158–166 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Seiler, J. L. et al. Dopamine signaling in the dorsomedial striatum promotes compulsive behavior. Curr. Biol. 32, 1175–1188.e5 (2022).

    Article 
    CAS 

    Google Scholar
     

  • van Elzelingen, W. et al. Striatal dopamine signals are region specific and temporally stable across action-sequence habit formation. Curr. Biol. 32, 1163–1174.e6 (2022).

    Article 

    Google Scholar
     

  • Wyvell, C. L. & Berridge, K. C. Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward ‘wanting’ without enhanced ‘liking’ or response reinforcement. J. Neurosci. 20, 8122–8130 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Cagniard, B. et al. Dopamine scales performance in the absence of new learning. Neuron 51, 541–547 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Yin, H. H., Zhuang, X. & Balleine, B. W. Instrumental learning in hyperdopaminergic mice. Neurobiol. Learn. Mem. 85, 283–288 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Jain, S. et al. Adaptor protein-3 produces synaptic vesicles that release phasic dopamine. Proc. Natl Acad. Sci. USA 120, e2309843120 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kaeser, P. S. et al. RIM1α and RIM1β are synthesized from distinct promoters of the RIM1 gene to mediate differential but overlapping synaptic functions. J. Neurosci. 28, 13435–13447 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kaeser, P. S. et al. RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144, 282–295 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Q. et al. Architecture of the synaptotagmin–SNARE machinery for neuronal exocytosis. Nature 525, 62–67 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Backman, C. M. et al. Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus. Genesis 44, 383–390 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Allen Mouse Brain Atlas [mouse, P56, coronal 2011] (Allen Institute for Brain Science, 2004); https://atlas.brain-map.org.

  • Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rudolph, S. et al. Cerebellum-specific deletion of the GABAA receptor δ subunit leads to sex-specific disruption of behavior. Cell Rep. 33, 108338 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Newell, A., Yang, K. & Deng, J. Stacked hourglass networks for human pose estimation. In Computer Vision—ECCV 2016. Lecture Notes in Computer Science vol. 9912 (eds Leibe, B., Matas, J., Sebe, N. & Welling, M.) 484–499 (Springer, 2016).

  • Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Nath, T. et al. Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat. Protoc. 14, 2152–2176 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hutchison, M. A. et al. Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior. Mol. Psychiatry 23, 1213–1225 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Uchida, N. & Mainen, Z. F. Speed and accuracy of olfactory discrimination in the rat. Nat. Neurosci. 6, 1224–1229 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Menegas, W. et al. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife 4, e10032 (2015).

    Article 

    Google Scholar
     

  • Nguyen, N. D. et al. Cortical reactivations predict future sensory responses. Nature 625, 110–118 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cai, X. & Kaeser, P. Data table for Cai et al., 2024. Zenodo https://doi.org/10.5281/zenodo.13329864 (2024).

  • Brimblecombe, K. R., Gracie, C. J., Platt, N. J. & Cragg, S. J. Gating of dopamine transmission by calcium and axonal N-, Q-, T- and L-type voltage-gated calcium channels differs between striatal domains. J. Physiol. 593, 929–946 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tedford, H. W. & Zamponi, G. W. Direct G protein modulation of Cav2 calcium channels. Pharmacol. Rev. 58, 837–862 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Pereira, D. B. et al. Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum. Nat. Neurosci. 19, 578–586 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Delignat-Lavaud, B. et al. Synaptotagmin-1-dependent phasic axonal dopamine release is dispensable for basic motor behaviors in mice. Nat. Commun. 14, 4120 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kaeser, P. S. & Regehr, W. G. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu. Rev. Physiol. 76, 333–363 (2014).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Note-Taking App Craft Updated With New Task Management Features and More

    The standout feature is the ability to create and stricter your ideas into a beautiful…

    12 hours ago

    Monster Energy’s Ayumu Hirano Claims Victory in Men’s Snowboard Halfpipe at the FIS World Cup at Copper Mountain

    Monster Energy congratulates team rider Ayumu Hirano on claiming first place in the Men's Snowboard…

    12 hours ago

    Mother of all bubbles: This is America’s ‘fatal flaw,’ expert says

    © 2024 Fortune Media IP Limited. All Rights Reserved. Use of this site constitutes acceptance…

    13 hours ago

    Qualcomm wins a legal battle over Arm chip licensing

    A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…

    2 days ago

    Three Comic/Movie/Band Reviews | Cup of Jo

    Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…

    2 days ago

    Actually, Flipping Properties Can Improve Housing Affordability—Here’s How

    15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…

    2 days ago