von Wintersdorff, C. J. H. et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 7, 173 (2016).
Carattoli, A. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 303, 298–304 (2013).
Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018).
Getino, M. & de la Cruz, F. Natural and artificial strategies to control the conjugative transmission of plasmids. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.mtbp-0015-2016 (2018).
Gophna, U. et al. No evidence of inhibition of horizontal gene transfer by CRISPR–Cas on evolutionary timescales. ISME J. 9, 2021–2027 (2015).
Masai, H. & Arai, K. Frpo: a novel single-stranded DNA promoter for transcription and for primer RNA synthesis of DNA replication. Cell 89, 897–907 (1997).
Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., MacLean, R. C. & San Millán, Á. Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-020-00497-1 (2021).
Guglielmini, J., de la Cruz, F. & Rocha, E. P. C. Evolution of conjugation and type IV secretion systems. Mol. Biol. Evol. 30, 315–331 (2013).
Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha, E. P. C. & de la Cruz, F. Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74, 434–452 (2010).
Ares-Arroyo, M., Nucci, A. & Rocha, E. P. C. Identification of novel origins of transfer across bacterial plasmids. Preprint at https://doi.org/10.1101/2024.01.30.577996 (2024).
Ramsay, J. P. & Firth, N. Diverse mobilization strategies facilitate transfer of non-conjugative mobile genetic elements. Curr. Opin. Microbiol. 38, 1–9 (2017).
Ares-Arroyo, M., Coluzzi, C. & Rocha, E. P. C. Origins of transfer establish networks of functional dependencies for plasmid transfer by conjugation. Nucleic Acids Res. https://doi.org/10.1093/nar/gkac1079 (2022).
De La Cruz, F., Frost, L. S., Meyer, R. J. & Zechner, E. L. Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol. Rev. 34, 18–40 (2010).
Westra, E. R. et al. CRISPR-Cas systems preferentially target the leading regions of MOBF conjugative plasmids. RNA Biol. 10, 749–761 (2013).
Venturini, C. et al. Sequences of two related multiple antibiotic resistance virulence plasmids sharing a unique IS26-related molecular signature isolated from different Escherichia coli pathotypes from different hosts. PLoS ONE 8, e78862 (2013).
Takahashi, H., Shao, M., Furuya, N. & Komano, T. The genome sequence of the incompatibility group Iγ plasmid R621a: evolution of IncI plasmids. Plasmid 66, 112–121 (2011).
Bates, S., Roscoe, R. A., Althorpe, N. J., Brammar, W. J. & Wilkins, B. M. Y. Expression of leading region genes on IncI1 plasmid ColIb-P9: genetic evidence for single-stranded DNA transcription. Microbiology 145, 2655–2662 (1999).
Althorpe, N. J., Chilley, P. M., Thomas, A. T., Brammar, W. J. & Wilkins, B. M. Transient transcriptional activation of the IncI1 plasmid anti-restriction gene (ardA) and SOS inhibition gene (psiB) early in conjugating recipient bacteria. Mol. Microbiol. 31, 133–142 (1999).
Miyakoshi, M., Ohtsubo, Y., Nagata, Y. & Tsuda, M. Transcriptome analysis of zygotic induction during conjugative transfer of plasmid RP4. Front. Microbiol. 11, 1125 (2020).
Couturier, A. et al. Real-time visualisation of the intracellular dynamics of conjugative plasmid transfer. Nat. Commun. 14, 294 (2023).
Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).
Borges, A. L., Davidson, A. R. & Bondy-Denomy, J. The discovery, mechanisms, and evolutionary impact of anti-CRISPRs. Annu. Rev. Virol. 4, 37–59 (2017).
Goryanin, I. I. et al. Antirestriction activities of KlcA (RP4) and ArdB (R64) proteins. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fny227 (2018).
Read, T. D., Thomas, A. T. & Wilkins, B. M. Evasion of type I and type II DNA restriction systems by Incl1 plasmid Collb-P9 during transfer by bacterial conjugation. Mol. Microbiol. 6, 1933–1941 (1992).
Jones, A. L., Barth, P. T. & Wilkins, B. M. Zygotic induction of plasmid ssb and psiB genes following conjugative transfer of Incl1 plasmid Collb-P9. Mol. Microbiol. 6, 605–613 (1992).
Virolle, C., Goldlust, K., Djermoun, S., Bigot, S. & Lesterlin, C. Plasmid transfer by conjugation in Gram-negative bacteria: from the cellular to the community level. Genes 11, 1239 (2020).
Garcillán-Barcia, M. P., Alvarado, A. & de la Cruz, F. Identification of bacterial plasmids based on mobility and plasmid population biology. FEMS Microbiol. Rev. 35, 936–956 (2011).
Fraikin, N., Couturier, A. & Lesterlin, C. The winding journey of conjugative plasmids toward a novel host cell. Curr. Opin. Microbiol. 78, 102449 (2024).
Stanley, S. Y. et al. Anti-CRISPR-associated proteins are crucial repressors of anti-CRISPR transcription. Cell 178, 1452–1464.e13 (2019).
Studier, F. W. Gene 0.3 of bacteriophage T7 acts to overcome the DNA restriction system of the host. J. Mol. Biol. 94, 283–295 (1975).
Zavilgelsky, G. B., Kotova, V. Y. & Rastorguev, S. M. Antimodification activity of the ArdA and Ocr proteins. Russ. J. Genet. 47, 139–146 (2011).
Fernández-López, C. et al. Mobilizable rolling-circle replicating plasmids from Gram-positive bacteria: a low-cost conjugative transfer. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.plas-0008-2013 (2014).
Soler, N. et al. Characterization of a relaxase belonging to the MOBT family, a widespread family in Firmicutes mediating the transfer of ICEs. Mob. DNA 10, 18 (2019).
Heilers, J.-H. et al. DNA processing by the MOBH family relaxase TraI encoded within the gonococcal genetic island. Nucleic Acids Res. 47, 8136–8153 (2019).
Murphy, J., Mahony, J., Ainsworth, S., Nauta, A. & Sinderen, D. Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl. Environ. Microbiol. 79, 7547–7555 (2013).
Günthert, U. & Reiners, L. Bacillus subtilis phage SPR codes for a DNA methyltransferase with triple sequence specificity. Nucleic Acids Res. 15, 3689–3702 (1987).
Takahashi, N., Naito, Y., Handa, N. & Kobayashi, I. A DNA methyltransferase can protect the genome from postdisturbance attack by a restriction-modification gene complex. J. Bacteriol. 184, 6100–6108 (2002).
Fomenkov, A. et al. Plasmid replication-associated single-strand-specific methyltransferases. Nucleic Acids Res. 48, 12858–12873 (2020).
Petrova, V., Chitteni-Pattu, S., Drees, J. C., Inman, R. B. & Cox, M. M. An SOS inhibitor that binds to free RecA protein: the PsiB protein. Mol. Cell 36, 121–130 (2009).
Al Mamun, A. A. M., Kishida, K. & Christie, P. J. Protein transfer through an F plasmid-encoded type IV secretion system suppresses the mating-induced SOS response. mBio 12, e01629-21 (2021).
Roy, D., Huguet, K. T., Grenier, F. & Burrus, V. IncC conjugative plasmids and SXT/R391 elements repair double-strand breaks caused by CRISPR–Cas during conjugation. Nucleic Acids Res. 48, 8815–8827 (2020).
Shereda, R. D., Kozlov, A. G., Lohman, T. M., Cox, M. M. & Keck, J. L. SSB as an organizer/mobilizer of genome maintenance complexes. Crit. Rev. Biochem. Mol. Biol. 43, 289–318 (2008).
Pinilla-Redondo, R. et al. Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements. Nat. Commun. 11, 5652 (2020).
Gerdes, K., Christensen, S. K. & Løbner-Olesen, A. Prokaryotic toxin–antitoxin stress response loci. Nat. Rev. Microbiol. 3, 371–382 (2005).
Sutton, M. D., Smith, B. T., Godoy, V. G. & Walker, G. C. The SOS response: recent insights into umuDC-dependent mutagenesis and DNA damage tolerance. Ann. Rev. Genet. 34, 479–497 (2000).
Lodwick, D., Owen, D. & Strike, P. DNA sequence analysis of the IMP UV protection and mutation operon of the plasmid TP110: identification of a third gene. Nucleic Acids Res. 18, 5045–5050 (1990).
Kulaeva, O. I., Wootton, J. C., Levine, A. S. & Woodgate, R. Characterization of the umu-complementing operon from R391. J. Bacteriol. 177, 2737–2743 (1995).
Munoz-Najar, U. & Vijayakumar, M. N. An operon that confers UV resistance by evoking the SOS mutagenic response in streptococcal conjugative transposon Tn5252. J. Bacteriol. 181, 2782–2788 (1999).
Permina, E. A., Mironov, A. A. & Gelfand, M. S. Damage-repair error-prone polymerases of eubacteria: association with mobile genome elements. Gene 293, 133–140 (2002).
McLenigan, M. P., Kulaeva, O. I., Ennis, D. G., Levine, A. S. & Woodgate, R. The bacteriophage P1 HumD protein is a functional homolog of the prokaryotic UmuD′-like proteins and facilitates SOS mutagenesis in Escherichia coli. J. Bacteriol. 181, 7005–7013 (1999).
Goldsmith, M., Sarov-Blat, L. & Livneh, Z. Plasmid-encoded MucB protein is a DNA polymerase (pol RI) specialized for lesion bypass in the presence of MucA′, RecA, and SSB. Proc. Natl Acad. Sci. USA 97, 11227–11231 (2000).
Turlan, C., Prudhomme, M., Fichant, G., Martin, B. & Gutierrez, C. SpxA1, a novel transcriptional regulator involved in X-state (competence) development in Streptococcus pneumoniae. Mol. Microbiol. 73, 492–506 (2009).
Garriss, G. & Henriques-Normark, B. Lysogeny in Streptococcus pneumoniae. Microorganisms 8, 1546 (2020).
Del Grosso, M. et al. Macrolide efflux genes mef(A) and mef(E) are carried by different genetic elements in Streptococcus pneumoniae. J. Clin. Microbiol. 40, 774–778 (2002).
Croucher, N. J. et al. Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict. PLoS Biol. 14, e1002394 (2016).
Norman, A., Hansen, L. H. & Sørensen, S. J. Conjugative plasmids: vessels of the communal gene pool. Philos. Trans. R. Soc. B. Biol. Sci. 364, 2275–2289 (2009).
Rubin, B. E. et al. Species- and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 7, 34–47 (2022).
Araya, D. P. et al. Efficacy of plasmid-encoded CRISPR-Cas antimicrobial is affected by competitive factors found in wild Enterococcus faecalis isolates. Preprint at bioRxiv https://doi.org/10.1101/2022.03.08.483478 (2022).
Citorik, R. J., Mimee, M. & Lu, T. K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32, 1141–1145 (2014).
Rodrigues, M., McBride, S. W., Hullahalli, K.,Palmer, K. L. & Duerkop, B. A. Conjugative Delivery of CRISPR-Cas9 for the Selective Depletion of Antibiotic-Resistant Enterococci. Antimicrobial Agents and Chemotherapy 63, 10.1128/aac.01454-19 (2019).
Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2013).
Mitchell, A. L. et al. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res. 48, D570–D578 (2020).
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf. 11, 119 (2010).
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
Miller, D., Stern, A. & Burstein, D. Deciphering microbial gene function using natural language processing. Nat. Commun. 13, 5731 (2022).
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).
Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).
Garcillán-Barcia, M. P., Redondo-Salvo, S., Vielva, L. & de la Cruz, F. in Horizontal Gene Transfer: Methods and Protocols. Methods in Molecular Biology vol. 2075 (ed. de la Cruz, F.) 295–308 (Humana, New York, 2020).
Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2020).
Li, X. et al. oriTfinder: a web-based tool for the identification of origin of transfers in DNA sequences of bacterial mobile genetic elements. Nucleic Acids Res. 46, W229–W234 (2018).
Zrimec, J. Multiple plasmid origin-of-transfer regions might aid the spread of antimicrobial resistance to human pathogens. MicrobiologyOpen 9, e1129 (2020).
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinf. 10, 421 (2009).
Li, W. & Godzik, A. CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).
ggtreeExtra: an R package to add geom layers on circular or other layout tree of ‘ggtree’ (Bioconductor, 2022).
Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).
Riadi, G., Medina-Moenne, C. & Holmes, D. S. TnpPred: a web service for the robust prediction of prokaryotic transposases. Int. J. Genomics 2012, 678761 (2012).
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).
Wang, J. et al. The conserved domain database in 2023. Nucleic Acids Res. 51, D384–D388 (2023).
Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information in 2023. Nucleic Acids Res. 51, D29–D38 (2023).
Soding, J., Biegert, A. & Lupas, A. HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).
Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).
Lin Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).
van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).
Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).
Nomura, N. et al. Identification of eleven single-strand initiation sequences (SSI) for priming of DNA replication in the F, R6K, R100 and ColE2 plasmids. Gene 108, 15–22 (1991).
Ross, W. et al. A third recognition element in bacterial promoters: DNA binding by the α subunit of RNA polymerase. Science 262, 1407–1413 (1993).
Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R. & Hofacker, I. L. The Vienna RNA Websuite. Nucleic Acids Res. 36, W70–W74 (2008).
Lorenz, R. et al. ViennaRNA package 2.0. Algorithms Mol. Biol. 6, 26 (2011).
Jossinet, F. RNArtistCore: a Kotlin DSL and library to create and plot RNA 2D structures. GitHub https://github.com/fjossinet/RNArtistCore (2023).
Yu, D. et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl Acad. Sci. USA 97, 5978–5983 (2000).
Tu, Q. et al. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency. Sci. Rep. 6, 24648 (2016).
Malaka De Silva, P. et al. A tale of two plasmids: contributions of plasmid associated phenotypes to epidemiological success among Shigella. Proc. R. Soc. B. Biol. Sci. 289, 20220581 (2022).
Darphorn, T. S. Antibiotic resistance plasmid composition and architecture in Escherichia coli isolates from meat. Sci. Rep. 13, 2136 (2021).
Thisted, T. & Gerdes, K. Mechanism of post-segregational killing by the hok/sok system of plasmid R1. J. Mol. Biol. 223, 41–54 (1992).
Gerdes, K. The parB (hok/sok) locus of plasmid R1: a general purpose plasmid stabilization system. Nat. Biotechnol. 6, 1402–1405 (1988).
Le Rhun, A. et al. Profiling the intragenic toxicity determinants of toxin–antitoxin systems: revisiting hok/Sok regulation. Nucleic Acids Res. 51, e4 (2023).
Loh, S. M., Cram, D. S. & Skurray, R. A. Nucleotide sequence and transcriptional analysis of a third function (Flm) involved in F-plasmid maintenance. Gene 66, 259–268 (1988).
Birge, E. A. Bacterial and bacteriophage genetics. VDOC.pub Library https://vdoc.pub/documents/bacterial-and-bacteriophage-genetics-5rte3vvpnkt0 (2006).
Her, H.-L., Lin, P.-T. & Wu, Y.-W. PangenomeNet: a pan-genome-based network reveals functional modules on antimicrobial resistome for Escherichia coli strains. BMC Bioinf. 22, 548 (2021).
Uribe, R. V. et al. Discovery and characterization of Cas9 inhibitors disseminated across seven bacterial Phyla. Cell Host Microbe 25, 233–241.e5 (2019).
Davidson, A. R. et al. Anti-CRISPRs: protein inhibitors of CRISPR-Cas systems. Annu. Rev. Biochem. 89, 309–332 (2020).
A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…
Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…
15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…
Particles in ship exhaust inadvertently cause cloud brightening – some geoengineering projects would try to…
The weather outside is frightful, but the iOS games are so delightful, let it play,…
A few flagship bond funds from some big-name Southern California-based firms saw outflows of more…