Categories: NATURE

Deeper and stronger North Atlantic Gyre during the Last Glacial Maximum


  • Hogg, A. M. & Gayen, B. Ocean gyres driven by surface buoyancy forcing. Geophys. Res. Lett. 47, e2020GL088539 (2020).

    Article 

    Google Scholar
     

  • Luyten, J., Pedlosky, J. & Stommel, H. Climatic inferences from the ventilated thermocline. Clim. Change 5, 183–191 (1983).

    Article 

    Google Scholar
     

  • Muglia, J. & Schmittner, A. Glacial Atlantic overturning increased by wind stress in climate models. Geophys. Res. Lett. 42, 9862–9868 (2015).

    Article 

    Google Scholar
     

  • Slowey, N. C. & Curry, W. B. Glacial-interglacial differences in circulation and carbon cycling within the upper western North Atlantic. Paleoceanography 10, 715–732 (1995).

    Article 

    Google Scholar
     

  • Boyle, E. A. & Keigwin, L. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330, 35–40 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Duplessy, J. C. et al. Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3, 343–360 (1988).

    Article 

    Google Scholar
     

  • Curry, W. B. & Oppo, D. W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography 20, PA1017 (2005).

    Article 

    Google Scholar
     

  • Buckley, M. W. & Marshall, J. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review. Rev. Geophys. 54, 5–63 (2016).

    Article 

    Google Scholar
     

  • Petit, T., Lozier, M. S., Rühs, S., Handmann, P. & Biastoch, A. Propagation and transformation of upper North Atlantic Deep Water from the subpolar gyre to 26.5°N. J. Geophys. Res. Oceans 128, e2023JC019726 (2023).

    Article 

    Google Scholar
     

  • Munk, W. H. On the wind-driven ocean circulation. J. Atmos. Sci. 7, 80–93 (1950).


    Google Scholar
     

  • Rossby, T. On gyre interactions. Deep Sea Res. Part II Top. Stud. Oceanogr. 46, 139–164 (1999).

    Article 

    Google Scholar
     

  • Tooth, O. J., Foukal, N. P., Johns, W. E., Johnson, H. L. & Wilson, C. Lagrangian decomposition of the Atlantic Ocean heat transport at 26.5°N. Preprint at https://doi.org/10.22541/essoar.170067209.93767492/v2 (2024).

  • Talley, L. D. in Mechanisms of Global Climate Change at Millennial Time Scales (eds Clark, P. U., Webb, R. S. & Keigwin, L. D.) 1–22 (American Geophysical Union, 1999).

  • Foukal, N. P. & Chafik, L. The AMOC needs a universally-accepted definition. Preprint at https://doi.org/10.1002/essoar.10512765.1 (2022).

  • Berglund, S., Döös, K., Groeskamp, S. & McDougall, T. J. The downward spiralling nature of the North Atlantic Subtropical Gyre. Nat. Commun. 13, 2000 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch-Stieglitz, J., Curry, W. B. & Slowey, N. A geostrophic transport estimate for the Florida Current from the oxygen isotope composition of benthic foraminifera. Paleoceanography 14, 360–373 (1999).

    Article 

    Google Scholar
     

  • Matsumoto, K. & Lynch-Stieglitz, J. Persistence of Gulf Stream separation during the Last Glacial Period: implications for current separation theories. J. Geophys. Res. Oceans 108, 3174 (2003).

    Article 

    Google Scholar
     

  • Gebbie, G. How much did Glacial North Atlantic water shoal? Paleoceanography 29, 190–209 (2014).

    Article 

    Google Scholar
     

  • Keigwin, L. D. & Swift, S. A. Carbon isotope evidence for a northern source of deep water in the glacial western North Atlantic. Proc. Natl Acad. Sci. 114, 2831–2835 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pöppelmeier, F., Jeltsch-Thömmes, A., Lippold, J., Joos, F. & Stocker, T. F. Multi-proxy constraints on Atlantic circulation dynamics since the last ice age. Nat. Geosci. 16, 349–356 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tierney, J. E. et al. Glacial cooling and climate sensitivity revisited. Nature 584, 569–573 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peltier, W. R. & Fairbanks, R. G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat. Sci. Rev. 25, 3322–3337 (2006).

    Article 

    Google Scholar
     

  • Talley, L. D. & McCartney, M. S. Distribution and circulation of Labrador Sea water. J. Phys. Oceanogr. 12, 1189–1205 (1982).

    Article 

    Google Scholar
     

  • Fratantoni, P. S. & Pickart, R. S. The western North Atlantic shelfbreak current system in summer. J. Phys. Oceanogr. 37, 2509–2533 (2007).

    Article 

    Google Scholar
     

  • Lund, D.C., Adkins, J. F. & Ferrari, R. Abyssal Atlantic circulation during the Last Glacial Maximum: constraining the ratio between transport and vertical mixing. Paleoceanography 26, PA1213 (2011).

    Article 

    Google Scholar
     

  • Keigwin, L. D. Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic. Paleoceanography 19, PA4012 (2004).

    Article 

    Google Scholar
     

  • Oppo, D. W. et al. Data constraints on glacial Atlantic water mass geometry and properties. Paleoceanogr. Paleoclimatol. 33, 1013–1034 (2018).

    Article 

    Google Scholar
     

  • Huang, E. et al. Response of eastern tropical Atlantic central waters to Atlantic meridional overturning circulation changes during the Last Glacial Maximum and Heinrich Stadial 1. Paleoceanography 27, PA3229 (2012).

    Article 

    Google Scholar
     

  • Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, X. et al. Higher Laurentide and Greenland ice sheets strengthen the North Atlantic ocean circulation. Clim. Dyn. 45, 139–150 (2015).

    Article 

    Google Scholar
     

  • Feucher, C., Maze, G. & Mercier, H. Subtropical mode water and permanent pycnocline properties in the world ocean. J. Geophys. Res. Oceans 124, 1139–1154 (2019).

    Article 

    Google Scholar
     

  • Evans, H. K. & Hall, I. R. Deepwater circulation on Blake Outer Ridge (western North Atlantic) during the Holocene, Younger Dryas, and Last Glacial Maximum. Geochem. Geophys. Geosyst. 9, Q03023 (2008).

    Article 

    Google Scholar
     

  • Thornalley, D. J. R., Barker, S., Becker, J., Hall, I. R. & Knorr, G. Abrupt changes in deep Atlantic circulation during the transition to full glacial conditions. Paleoceanography 28, 253–262 (2013).

    Article 

    Google Scholar
     

  • Drouin, K. L., Lozier, M. S., Beron-Vera, F. J., Miron, P. & Olascoaga, M. J. Surface pathways connecting the South and North Atlantic oceans. Geophys. Res. Lett. 49, e2021GL096646 (2022).

    Article 

    Google Scholar
     

  • Ionita, D. A., Di Lorenzo, E. & Lynch-Stieglitz, J. Effect of lower sea level on geostrophic transport through the Florida Straits during the Last Glacial Maximum. Paleoceanography 24, PA4210 (2009).

    Article 

    Google Scholar
     

  • Marchitto, T. M. & Broecker, W. S. Deep water mass geometry in the glacial Atlantic Ocean: a review of constraints from the paleonutrient proxy Cd/Ca. Geochem. Geophys. Geosyst. 7, Q12003 (2006).

    Article 

    Google Scholar
     

  • Gary, S. F., Lozier, M. S., Biastoch, A. & Böning, C. W. Reconciling tracer and float observations of the export pathways of Labrador Sea Water. Geophys. Res. Lett. 39, L24606 (2012).

    Article 

    Google Scholar
     

  • Rhein, M., Kieke, D. & Steinfeldt, R. Advection of North Atlantic Deep Water from the Labrador Sea to the southern hemisphere. J. Geophys. Res. Oceans 120, 2471–2487 (2015).

    Article 

    Google Scholar
     

  • Andres, M., Muglia, M., Bahr, F. & Bane, J. Continuous flow of upper Labrador Sea water around Cape Hatteras. Sci. Rep. 8, 4494 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menviel, L. C. et al. Enhanced mid-depth southward transport in the northeast Atlantic at the Last Glacial Maximum despite a weaker AMOC. Paleoceanogr. Paleoclimatol. 35, e2019PA003793 (2020).

    Article 

    Google Scholar
     

  • Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreno-Chamarro, E., Ferreira, D. & Marshall, J. Polar phasing and cross-equatorial heat transfer following a simulated abrupt NH warming of a glacial climate. Paleoceanogr. Paleoclimatol. 35, e2019PA003810 (2020).

    Article 

    Google Scholar
     

  • Amante, C. & Eakins, B.W. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA (2009).

  • Schlitzer, R. Ocean Data View, https://odv.awi.de/ (2023).

  • Rasmussen, T. L., Oppo, D. W., Thomsen, E. & Lehman, S. J. Deep sea records from the southeast Labrador Sea: ocean circulation changes and ice-rafting events during the last 160,000 years. Paleoceanography 18, 1018 (2003).

    Article 

    Google Scholar
     

  • Vidal, L. et al. Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events. Earth Planet. Sci. Lett. 146, 13–27 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Mulitza, S. et al. Synchronous and proportional deglacial changes in Atlantic meridional overturning and northeast Brazilian precipitation. Paleoceanography 32, 622–633 (2017).

    Article 

    Google Scholar
     

  • Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).


    Google Scholar
     

  • Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K. & Severinghaus, J. Mean global ocean temperatures during the last glacial transition. Nature 553, 39–44 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Muglia, J. et al. A global synthesis of high-resolution stable isotope data from benthic foraminifera of the last deglaciation. Sci. Data 10, 131 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoogakker, B., Elderfield, H., Oliver, K. & Crowhurst, S. Benthic foraminiferal oxygen isotope offsets over the last glacial-interglacial cycle. Paleoceanography 25, PA4229 (2010).

    Article 

    Google Scholar
     

  • Thornalley, D. J. R., Elderfield, H. & McCave, I. N. Intermediate and deep water paleoceanography of the northern North Atlantic over the past 21,000 years. Paleoceanography 25, PA1211 (2010).

    Article 

    Google Scholar
     

  • McCave, I. N., Manighetti, B. & Robinson, S. G. Sortable silt and fine sediment size/composition slicing: parameters for palaeocurrent speed and palaeoceanography. Paleoceanography 10, 593–610 (1995).

    Article 

    Google Scholar
     

  • Tegzes, A. D., Jansen, E., Lorentzen, T. & Telford, R. J. Northward oceanic heat transport in the main branch of the Norwegian Atlantic Current over the late Holocene. Holocene 27, 1034–1044 (2017).

    Article 

    Google Scholar
     

  • Lhardy, F. et al. A first intercomparison of the simulated LGM carbon results within PMIP-Carbon: role of the ocean boundary conditions. Paleoceanogr. Paleoclimatol. 36, e2021PA004302 (2021).

    Article 

    Google Scholar
     

  • Henry, L. G. et al. North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science 353, 470–474 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lauvset, S. K. et al. GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product. Earth Syst. Sci. Data 14, 5543–5572 (2022).

    Article 

    Google Scholar
     

  • Wharton, J. H. & Renoult, M. Scripts used for the analyses of Wharton et al. (2024), Deeper and Stronger North Atlantic Gyre During the Last Glacial Maximum. Zenodo https://doi.org/10.5281/zenodo.10955898 (2024).

  • Marchitto, T. M. et al. Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera. Geochim. Cosmochim. Acta 130, 1–11 (2014).

    Article 
    CAS 

    Google Scholar
     

  • LeGrande, A. N. & Schmidt, G. A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. 33, L12604 (2006).

    Article 

    Google Scholar
     

  • Proceedings of the Ocean Drilling Program. Volume 172. Scientific Results (Ocean Drilling Program, 2001).

  • Hendry, K. R. & Brzezinski, M. A. Using silicon isotopes to understand the role of the Southern Ocean in modern and ancient biogeochemistry and climate. Quat. Sci. Rev. 89, 13–26 (2014).

    Article 

    Google Scholar
     

  • Yasuhara, M., Cronin, T. M., deMenocal, P. B., Okahashi, H. & Linsley, B. K. Abrupt climate change and collapse of deep-sea ecosystems. Proc. Natl Acad. Sci. 105, 1556–1560 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svensson, A. et al. A 60 000 year Greenland stratigraphic ice core chronology. Clim. Past 4, 47–57 (2008).

    Article 

    Google Scholar
     

  • Hagen, S. & Keigwin, L. D. Sea-surface temperature variability and deep water reorganisation in the subtropical North Atlantic during Isotope Stage 2–4. Mar. Geol. 189, 145–162 (2002).

    Article 

    Google Scholar
     

  • Thornalley, D. J. R. et al. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556, 227–230 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pöppelmeier, F. et al. Influence of ocean circulation and benthic exchange on deep Northwest Atlantic Nd isotope records during the past 30,000 years. Geochem. Geophys. Geosyst. 20, 4457–4469 (2019).

    Article 

    Google Scholar
     

  • Böhm, E. et al. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 517, 73–76 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Naughton, F. et al. A 12,000-yr pollen record off Cape Hatteras — pollen sources and mechanisms of pollen dispersion. Mar. Geol. 367, 118–129 (2015).

    Article 

    Google Scholar
     

  • Jöhnck, J., Holbourn, A., Kuhnt, W. & Andersen, N. Oxygen isotope offsets in deep-water benthic foraminifera. J. Foraminifer. Res. 51, 225–244 (2021).

    Article 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Qualcomm wins a legal battle over Arm chip licensing

    A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…

    2 days ago

    Three Comic/Movie/Band Reviews | Cup of Jo

    Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…

    2 days ago

    Actually, Flipping Properties Can Improve Housing Affordability—Here’s How

    15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…

    2 days ago

    Is solar geoengineering research having its moment?

    Particles in ship exhaust inadvertently cause cloud brightening – some geoengineering projects would try to…

    2 days ago

    5 Great Games to Put You in the Winter Mood

    The weather outside is frightful, but the iOS games are so delightful, let it play,…

    2 days ago

    Banner year for fixed-income funds leaves TCW and Western Asset behind

    A few flagship bond funds from some big-name Southern California-based firms saw outflows of more…

    2 days ago