Categories: NATURE

Deeper and stronger North Atlantic Gyre during the Last Glacial Maximum


  • Hogg, A. M. & Gayen, B. Ocean gyres driven by surface buoyancy forcing. Geophys. Res. Lett. 47, e2020GL088539 (2020).

    Article 

    Google Scholar
     

  • Luyten, J., Pedlosky, J. & Stommel, H. Climatic inferences from the ventilated thermocline. Clim. Change 5, 183–191 (1983).

    Article 

    Google Scholar
     

  • Muglia, J. & Schmittner, A. Glacial Atlantic overturning increased by wind stress in climate models. Geophys. Res. Lett. 42, 9862–9868 (2015).

    Article 

    Google Scholar
     

  • Slowey, N. C. & Curry, W. B. Glacial-interglacial differences in circulation and carbon cycling within the upper western North Atlantic. Paleoceanography 10, 715–732 (1995).

    Article 

    Google Scholar
     

  • Boyle, E. A. & Keigwin, L. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330, 35–40 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Duplessy, J. C. et al. Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3, 343–360 (1988).

    Article 

    Google Scholar
     

  • Curry, W. B. & Oppo, D. W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography 20, PA1017 (2005).

    Article 

    Google Scholar
     

  • Buckley, M. W. & Marshall, J. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review. Rev. Geophys. 54, 5–63 (2016).

    Article 

    Google Scholar
     

  • Petit, T., Lozier, M. S., Rühs, S., Handmann, P. & Biastoch, A. Propagation and transformation of upper North Atlantic Deep Water from the subpolar gyre to 26.5°N. J. Geophys. Res. Oceans 128, e2023JC019726 (2023).

    Article 

    Google Scholar
     

  • Munk, W. H. On the wind-driven ocean circulation. J. Atmos. Sci. 7, 80–93 (1950).


    Google Scholar
     

  • Rossby, T. On gyre interactions. Deep Sea Res. Part II Top. Stud. Oceanogr. 46, 139–164 (1999).

    Article 

    Google Scholar
     

  • Tooth, O. J., Foukal, N. P., Johns, W. E., Johnson, H. L. & Wilson, C. Lagrangian decomposition of the Atlantic Ocean heat transport at 26.5°N. Preprint at https://doi.org/10.22541/essoar.170067209.93767492/v2 (2024).

  • Talley, L. D. in Mechanisms of Global Climate Change at Millennial Time Scales (eds Clark, P. U., Webb, R. S. & Keigwin, L. D.) 1–22 (American Geophysical Union, 1999).

  • Foukal, N. P. & Chafik, L. The AMOC needs a universally-accepted definition. Preprint at https://doi.org/10.1002/essoar.10512765.1 (2022).

  • Berglund, S., Döös, K., Groeskamp, S. & McDougall, T. J. The downward spiralling nature of the North Atlantic Subtropical Gyre. Nat. Commun. 13, 2000 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch-Stieglitz, J., Curry, W. B. & Slowey, N. A geostrophic transport estimate for the Florida Current from the oxygen isotope composition of benthic foraminifera. Paleoceanography 14, 360–373 (1999).

    Article 

    Google Scholar
     

  • Matsumoto, K. & Lynch-Stieglitz, J. Persistence of Gulf Stream separation during the Last Glacial Period: implications for current separation theories. J. Geophys. Res. Oceans 108, 3174 (2003).

    Article 

    Google Scholar
     

  • Gebbie, G. How much did Glacial North Atlantic water shoal? Paleoceanography 29, 190–209 (2014).

    Article 

    Google Scholar
     

  • Keigwin, L. D. & Swift, S. A. Carbon isotope evidence for a northern source of deep water in the glacial western North Atlantic. Proc. Natl Acad. Sci. 114, 2831–2835 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pöppelmeier, F., Jeltsch-Thömmes, A., Lippold, J., Joos, F. & Stocker, T. F. Multi-proxy constraints on Atlantic circulation dynamics since the last ice age. Nat. Geosci. 16, 349–356 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tierney, J. E. et al. Glacial cooling and climate sensitivity revisited. Nature 584, 569–573 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peltier, W. R. & Fairbanks, R. G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat. Sci. Rev. 25, 3322–3337 (2006).

    Article 

    Google Scholar
     

  • Talley, L. D. & McCartney, M. S. Distribution and circulation of Labrador Sea water. J. Phys. Oceanogr. 12, 1189–1205 (1982).

    Article 

    Google Scholar
     

  • Fratantoni, P. S. & Pickart, R. S. The western North Atlantic shelfbreak current system in summer. J. Phys. Oceanogr. 37, 2509–2533 (2007).

    Article 

    Google Scholar
     

  • Lund, D.C., Adkins, J. F. & Ferrari, R. Abyssal Atlantic circulation during the Last Glacial Maximum: constraining the ratio between transport and vertical mixing. Paleoceanography 26, PA1213 (2011).

    Article 

    Google Scholar
     

  • Keigwin, L. D. Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic. Paleoceanography 19, PA4012 (2004).

    Article 

    Google Scholar
     

  • Oppo, D. W. et al. Data constraints on glacial Atlantic water mass geometry and properties. Paleoceanogr. Paleoclimatol. 33, 1013–1034 (2018).

    Article 

    Google Scholar
     

  • Huang, E. et al. Response of eastern tropical Atlantic central waters to Atlantic meridional overturning circulation changes during the Last Glacial Maximum and Heinrich Stadial 1. Paleoceanography 27, PA3229 (2012).

    Article 

    Google Scholar
     

  • Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, X. et al. Higher Laurentide and Greenland ice sheets strengthen the North Atlantic ocean circulation. Clim. Dyn. 45, 139–150 (2015).

    Article 

    Google Scholar
     

  • Feucher, C., Maze, G. & Mercier, H. Subtropical mode water and permanent pycnocline properties in the world ocean. J. Geophys. Res. Oceans 124, 1139–1154 (2019).

    Article 

    Google Scholar
     

  • Evans, H. K. & Hall, I. R. Deepwater circulation on Blake Outer Ridge (western North Atlantic) during the Holocene, Younger Dryas, and Last Glacial Maximum. Geochem. Geophys. Geosyst. 9, Q03023 (2008).

    Article 

    Google Scholar
     

  • Thornalley, D. J. R., Barker, S., Becker, J., Hall, I. R. & Knorr, G. Abrupt changes in deep Atlantic circulation during the transition to full glacial conditions. Paleoceanography 28, 253–262 (2013).

    Article 

    Google Scholar
     

  • Drouin, K. L., Lozier, M. S., Beron-Vera, F. J., Miron, P. & Olascoaga, M. J. Surface pathways connecting the South and North Atlantic oceans. Geophys. Res. Lett. 49, e2021GL096646 (2022).

    Article 

    Google Scholar
     

  • Ionita, D. A., Di Lorenzo, E. & Lynch-Stieglitz, J. Effect of lower sea level on geostrophic transport through the Florida Straits during the Last Glacial Maximum. Paleoceanography 24, PA4210 (2009).

    Article 

    Google Scholar
     

  • Marchitto, T. M. & Broecker, W. S. Deep water mass geometry in the glacial Atlantic Ocean: a review of constraints from the paleonutrient proxy Cd/Ca. Geochem. Geophys. Geosyst. 7, Q12003 (2006).

    Article 

    Google Scholar
     

  • Gary, S. F., Lozier, M. S., Biastoch, A. & Böning, C. W. Reconciling tracer and float observations of the export pathways of Labrador Sea Water. Geophys. Res. Lett. 39, L24606 (2012).

    Article 

    Google Scholar
     

  • Rhein, M., Kieke, D. & Steinfeldt, R. Advection of North Atlantic Deep Water from the Labrador Sea to the southern hemisphere. J. Geophys. Res. Oceans 120, 2471–2487 (2015).

    Article 

    Google Scholar
     

  • Andres, M., Muglia, M., Bahr, F. & Bane, J. Continuous flow of upper Labrador Sea water around Cape Hatteras. Sci. Rep. 8, 4494 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menviel, L. C. et al. Enhanced mid-depth southward transport in the northeast Atlantic at the Last Glacial Maximum despite a weaker AMOC. Paleoceanogr. Paleoclimatol. 35, e2019PA003793 (2020).

    Article 

    Google Scholar
     

  • Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreno-Chamarro, E., Ferreira, D. & Marshall, J. Polar phasing and cross-equatorial heat transfer following a simulated abrupt NH warming of a glacial climate. Paleoceanogr. Paleoclimatol. 35, e2019PA003810 (2020).

    Article 

    Google Scholar
     

  • Amante, C. & Eakins, B.W. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA (2009).

  • Schlitzer, R. Ocean Data View, https://odv.awi.de/ (2023).

  • Rasmussen, T. L., Oppo, D. W., Thomsen, E. & Lehman, S. J. Deep sea records from the southeast Labrador Sea: ocean circulation changes and ice-rafting events during the last 160,000 years. Paleoceanography 18, 1018 (2003).

    Article 

    Google Scholar
     

  • Vidal, L. et al. Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events. Earth Planet. Sci. Lett. 146, 13–27 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Mulitza, S. et al. Synchronous and proportional deglacial changes in Atlantic meridional overturning and northeast Brazilian precipitation. Paleoceanography 32, 622–633 (2017).

    Article 

    Google Scholar
     

  • Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).


    Google Scholar
     

  • Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K. & Severinghaus, J. Mean global ocean temperatures during the last glacial transition. Nature 553, 39–44 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Muglia, J. et al. A global synthesis of high-resolution stable isotope data from benthic foraminifera of the last deglaciation. Sci. Data 10, 131 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoogakker, B., Elderfield, H., Oliver, K. & Crowhurst, S. Benthic foraminiferal oxygen isotope offsets over the last glacial-interglacial cycle. Paleoceanography 25, PA4229 (2010).

    Article 

    Google Scholar
     

  • Thornalley, D. J. R., Elderfield, H. & McCave, I. N. Intermediate and deep water paleoceanography of the northern North Atlantic over the past 21,000 years. Paleoceanography 25, PA1211 (2010).

    Article 

    Google Scholar
     

  • McCave, I. N., Manighetti, B. & Robinson, S. G. Sortable silt and fine sediment size/composition slicing: parameters for palaeocurrent speed and palaeoceanography. Paleoceanography 10, 593–610 (1995).

    Article 

    Google Scholar
     

  • Tegzes, A. D., Jansen, E., Lorentzen, T. & Telford, R. J. Northward oceanic heat transport in the main branch of the Norwegian Atlantic Current over the late Holocene. Holocene 27, 1034–1044 (2017).

    Article 

    Google Scholar
     

  • Lhardy, F. et al. A first intercomparison of the simulated LGM carbon results within PMIP-Carbon: role of the ocean boundary conditions. Paleoceanogr. Paleoclimatol. 36, e2021PA004302 (2021).

    Article 

    Google Scholar
     

  • Henry, L. G. et al. North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science 353, 470–474 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lauvset, S. K. et al. GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product. Earth Syst. Sci. Data 14, 5543–5572 (2022).

    Article 

    Google Scholar
     

  • Wharton, J. H. & Renoult, M. Scripts used for the analyses of Wharton et al. (2024), Deeper and Stronger North Atlantic Gyre During the Last Glacial Maximum. Zenodo https://doi.org/10.5281/zenodo.10955898 (2024).

  • Marchitto, T. M. et al. Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera. Geochim. Cosmochim. Acta 130, 1–11 (2014).

    Article 
    CAS 

    Google Scholar
     

  • LeGrande, A. N. & Schmidt, G. A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. 33, L12604 (2006).

    Article 

    Google Scholar
     

  • Proceedings of the Ocean Drilling Program. Volume 172. Scientific Results (Ocean Drilling Program, 2001).

  • Hendry, K. R. & Brzezinski, M. A. Using silicon isotopes to understand the role of the Southern Ocean in modern and ancient biogeochemistry and climate. Quat. Sci. Rev. 89, 13–26 (2014).

    Article 

    Google Scholar
     

  • Yasuhara, M., Cronin, T. M., deMenocal, P. B., Okahashi, H. & Linsley, B. K. Abrupt climate change and collapse of deep-sea ecosystems. Proc. Natl Acad. Sci. 105, 1556–1560 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svensson, A. et al. A 60 000 year Greenland stratigraphic ice core chronology. Clim. Past 4, 47–57 (2008).

    Article 

    Google Scholar
     

  • Hagen, S. & Keigwin, L. D. Sea-surface temperature variability and deep water reorganisation in the subtropical North Atlantic during Isotope Stage 2–4. Mar. Geol. 189, 145–162 (2002).

    Article 

    Google Scholar
     

  • Thornalley, D. J. R. et al. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556, 227–230 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pöppelmeier, F. et al. Influence of ocean circulation and benthic exchange on deep Northwest Atlantic Nd isotope records during the past 30,000 years. Geochem. Geophys. Geosyst. 20, 4457–4469 (2019).

    Article 

    Google Scholar
     

  • Böhm, E. et al. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 517, 73–76 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Naughton, F. et al. A 12,000-yr pollen record off Cape Hatteras — pollen sources and mechanisms of pollen dispersion. Mar. Geol. 367, 118–129 (2015).

    Article 

    Google Scholar
     

  • Jöhnck, J., Holbourn, A., Kuhnt, W. & Andersen, N. Oxygen isotope offsets in deep-water benthic foraminifera. J. Foraminifer. Res. 51, 225–244 (2021).

    Article 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    One of Africa’s most successful founders is back with a new AI startup and already raised $9M

    In 2023, co-founders Karim Jouini and Jihed Othmani sold their expense management startup Expensya to…

    13 hours ago

    Everyday Clothes I’ve Worn a Million Times

    What do you wear on repeat? I would love to hear your trusty list! Here…

    14 hours ago

    Redfin Joins the Parade of Housing Bears—How Does Their Prediction Stack Up?

    In This Article Don’t expect your home equity to increase this year. That’s the forecast…

    14 hours ago

    Crafty cockatoos learn to use public drinking fountains

    Cockatoos in Sydney, Australia, have learned to use public water fountains by twisting a handle,…

    14 hours ago

    Cub8 Is Hypnotic and High Stakes Fun

    Gameplay is simple to pick up buy very difficult to master. You’ll tap on the…

    14 hours ago

    America’s biggest lender is closing its wallet — and investors and home buyers will feel it. Here’s what to watch.

    Prepare for higher U.S. interest rates if Japan cuts its U.S. Treasury bond holdings. But…

    14 hours ago