Bitter, M. C. et al. Fluctuating selection and global change: a synthesis and review on disentangling the roles of climate amplitude, predictability and novelty. Proc. R. Soc. B 288, 20210727 (2021).
Botero, C. A., Weissing, F. J., Wright, J. & Rubenstein, D. R. Evolutionary tipping points in the capacity to adapt to environmental change. Proc. Natl Acad. Sci. USA 112, 184–189 (2015).
Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).
Buffalo, V. & Coop, G. Estimating the genome-wide contribution of selection to temporal allele frequency change. Proc. Natl Acad. Sci. USA 117, 20672–20680 (2020).
Clark, R. D. et al. The practice and promise of temporal genomics for measuring evolutionary responses to global change. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13789 (2023).
Lynch, M., Wei, W., Ye, Z. & Pfrender, M. E. The genome-wide signature of short-term temporal selection. Proc. Natl Acad. Sci USA 121, e2307107121 (2024).
Barton, N. H. & Turelli, M. Evolutionary quantitative genetics: how little do we know? Annu. Rev. Genet. 23, 337–370 (1989).
Bertram, J. & Masel, J. Different mechanisms drive the maintenance of polymorphism at loci subject to strong versus weak fluctuating selection. Evolution 73, 883–896 (2019).
Hedrick, P. W. Genetic polymorphism in heterogeneous environments: the age of genomics. Annu. Rev. Ecol. Evol. Syst. 37, 67–93 (2006).
Messer, P. W., Ellner, S. P. & Hairston, N. G. Can population genetics adapt to rapid evolution? Trends Genet. 32, 408–418 (2016).
Wittmann, M. J., Bergland, A. O., Feldman, M. W., Schmidt, P. S. & Petrov, D. A. Seasonally fluctuating selection can maintain polymorphism at many loci via segregation lift. Proc. Natl Acad. Sci. USA 114, E9932–E9941 (2017).
Gleason, J. M., Roy, P. R., Everman, E. R., Gleason, T. C. & Morgan, T. J. Phenology of Drosophila species across a temperate growing season and implications for behavior. PLoS ONE 14, e0216601 (2019).
Boor, G. K. H., Schultz, C. B., Crone, E. E. & Morris, W. F. Mechanism matters: the cause of fluctuations in boom–bust populations governs optimal habitat restoration strategy. Ecol. Appl. 28, 356–372 (2018).
Kendall, B. E. et al. Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. Ecology 80, 1789–1805 (1999).
Behrman, E. L., Watson, S. S., O’Brien, K. R., Heschel, M. S. & Schmidt, P. S. Seasonal variation in life history traits in two Drosophila species. J. Evol. Biol. 28, 1691–1704 (2015).
Behrman, E. L. & Schmidt, P. How predictable is rapid evolution? Preprint at bioRxiv https://doi.org/10.1101/2022.10.27.514123 (2022).
Schmidt, P. S. & Conde, D. R. Environmental heterogeneity and the maintenance of genetic variation for reproductive diapause in Drosophila melanogaster. Evolution 60, 1602–1611 (2006).
Band, H. T. & Ives, P. T. Correlated changes in environment and lethal frequency in a natural population of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 47, 180–185 (1961).
Dobzhansky, T. Genetics of natural populations IX. Temporal changes in the composition of populations of Drosophila pseudoobscura. Genetics 28, 162–186 (1943).
Bergland, A. O., Behrman, E. L., O’Brien, K. R., Schmidt, P. S. & Petrov, D. A. Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS Genet. 10, e1004775 (2014).
Machado, H. E. et al. Broad geographic sampling reveals the shared basis and environmental correlates of seasonal adaptation in Drosophila. eLife 10, e67577 (2021).
Rudman, S. M. et al. Direct observation of adaptive tracking on ecological time scales in Drosophila. Science 375, eabj7484 (2022).
Lässig, M., Mustonen, V. & Walczak, A. M. Predicting evolution. Nat. Ecol. Evol. 1, 77 (2017).
Charlesworth, B. Evolution in Age-Structured Populations (Cambridge Univ. Press, 1994).
Wiberg, R. A. W., Gaggiotti, O. E., Morrissey, M. B. & Ritchie, M. G. Identifying consistent allele frequency differences in studies of stratified populations. Methods Ecol. Evol. 8, 1899–1909 (2017).
Corbett-Detig, R. B., Hartl, D. L. & Sackton, T. B. Natural selection constrains neutral diversity across a wide range of species. PLoS Biol. 13, e1002112 (2015).
Buffalo, V. & Coop, G. The linked selection signature of rapid adaptation in temporal genomic data. Genetics 213, 1007–1045 (2019).
Bolnick, D. I., Barrett, R. D. H., Oke, K. B., Rennison, D. J. & Stuart, Y. E. (Non)parallel evolution. Annu. Rev. Ecol. Evol. Syst. 49, 303–330 (2018).
Barrett, R. D. H. et al. Linking a mutation to survival in wild mice. Science 363, 499–504 (2019).
Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307, 1928–1933 (2005).
Hoekstra, H. E., Hirschmann, R. J., Bundey, R. A., Insel, P. A. & Crossland, J. P. A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313, 101–104 (2006).
Yeaman, S. et al. Convergent local adaptation to climate in distantly related conifers. Science 353, 1431–1433 (2016).
Dobzhansky, T. Altitudinal and seasonal changes produced by natural selection in certain populations of Drosophila pseudoobscura and Drosophila persimilis. Genetics 33, 158–176 (1948).
Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet. Res. 8, 269–294 (1966).
Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 (1974).
Neher, R. A. Genetic draft, selective interference, and population genetics of rapid adaptation. Annu. Rev. Ecol. Evol. Syst. 44, 195–215 (2013).
Turelli, M. & Barton, N. H. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent allelic effects and G × E interactions. Genetics 166, 1053–1079 (2004).
Aguade, M., Miyashita, N. & Langley, C. H. Reduced variation in the yellow-achaete-scute region in natural populations of Drosophila melanogaster. Genetics 122, 607–615 (1989).
Barton, N. H. Genetic hitchhiking. Phil. Trans. R. Soc. Lond. B 355, 1553–1562 (2000).
Begun, D. J. & Aquadro, C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature 356, 519–520 (1992).
Cai, J. J., Macpherson, J. M., Sella, G. & Petrov, D. A. Pervasive hitchhiking at coding and regulatory sites in humans. PLoS Genet. 5, e1000336 (2009).
Charlesworth, B. & Jensen, J. D. Effects of selection at linked sites on patterns of genetic variability. Annu. Rev. Ecol. Evol. Syst. 52, 177–197 (2021).
Gillespie, J. H. Junk ain’t what junk does: neutral alleles in a selected context. Gene 205, 291–299 (1997).
Macpherson, J. M., Sella, G., Davis, J. C. & Petrov, D. A. Genomewide spatial correspondence between nonsynonymous divergence and neutral polymorphism reveals extensive adaptation in Drosophila. Genetics 177, 2083–2099 (2007).
Wittmann, M. J., Mousset, S. & Hermisson, J. Modeling the genetic footprint of fluctuating balancing selection: from the local to the genomic scale. Genetics 223, iyad022 (2023).
Buffalo, V. Quantifying the relationship between genetic diversity and population size suggests natural selection cannot explain Lewontin’s Paradox. eLife 10, e67509 (2021).
Coop, G. Does linked selection explain the narrow range of genetic diversity across species? Preprint at bioRxiv https://doi.org/10.1101/042598 (2016).
Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia Univ. Press, 1974).
Levins, R. Evolution in Changing Environments (Princeton Univ. Press, 1968).
Stroud, J. T., Moore, M. P., Langerhans, R. B. & Losos, J. B. Fluctuating selection maintains distinct species phenotypes in an ecological community in the wild. Proc. Natl Acad. Sci. USA 120, e2222071120 (2023).
Gingerich, P. D. Rates of evolution: effects of time and temporal scaling. Science 222, 159–161 (1983).
Richardson, J. L., Urban, M. C., Bolnick, D. I. & Skelly, D. K. Microgeographic adaptation and the spatial scale of evolution. Trends Ecol. Evol. 29, 165–176 (2014).
Donihue, C. M. et al. Hurricane-induced selection on the morphology of an island lizard. Nature 560, 88–91 (2018).
Campbell-Staton, S. C. et al. Ivory poaching and the rapid evolution of tusklessness in African elephants. Science 374, 483–487 (2021).
Exposito-Alonso, M. et al. Genetic diversity loss in the Anthropocene. Science 377, 1431–1435 (2022).
Rudman, S. M. et al. Microbiome composition shapes rapid genomic adaptation of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 116, 20025–20032 (2019).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Tilk, S. et al. Accurate allele frequencies from ultra-low coverage Pool-seq samples in evolve-and-resequence experiments. G3 9, 4159–4168 (2019).
Kessner, D., Turner, T. L. & Novembre, J. Maximum likelihood estimation of frequencies of known haplotypes from pooled sequence data. Mol. Biol. Evol. 30, 1145–1158 (2013).
Kofler, R., Pandey, R. V. & Schlötterer, C. PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-seq). Bioinformatics 27, 3435–3436 (2011).
A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…
Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…
15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…
Particles in ship exhaust inadvertently cause cloud brightening – some geoengineering projects would try to…
The weather outside is frightful, but the iOS games are so delightful, let it play,…
A few flagship bond funds from some big-name Southern California-based firms saw outflows of more…