Categories: NATURE

Closed-loop transfer enables artificial intelligence to yield chemical knowledge


  • Flores-Leonar, M. M. et al. Materials acceleration platforms: on the way to autonomous experimentation. Curr. Opin. Green Sustain. Chem. 25, 100370 (2020).

    Article 

    Google Scholar
     

  • Peng, X. & Wang, X. Next-generation intelligent laboratories for materials design and manufacturing. MRS Bull. 48, 179–185 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Angello, N. H. et al. Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura coupling. Science 378, 399–405 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Koscher, B. A. et al. Autonomous, multiproperty-driven molecular discovery: from predictions to measurements and back. Science 382, eadi1407 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, J. et al. Efficient closed-loop maximization of carbon nanotube growth rate using Bayesian optimization. Sci. Rep. 10, 9040 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alem, S. et al. Degradation mechanism of benzodithiophene-based conjugated polymers when exposed to light in air. ACS Appl. Mater. Interfaces 4, 2993–2998 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mateker, W. R. & McGehee, M. D. Progress in understanding degradation mechanisms and improving stability in organic photovoltaics. Adv. Mater. 29, 1603940 (2017).

    Article 

    Google Scholar
     

  • Liu, Z.-X. et al. Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics. Nat. Commun. 12, 3049 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bekri, N., Asmare, E., Mammo, W. & Tegegne, N. A. Photostability of benzodithiophene based polymer: effect of PC60BM and intermolecular interactions. Mater. Res. Express 9, 055502 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Anderson, M. A., Hamstra, A., Larson, B. W. & Ratcliff, E. L. Distinguishing photo-induced oxygen attack on alkyl chain versus conjugated backbone for alkylthienyl-benzodithiophene (BDTT)-based push–pull polymers. J. Mater. Chem. A 11, 17858–17871 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Burlingame, Q. et al. Intrinsically stable organic solar cells under high-intensity illumination. Nature 573, 394–397 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burlingame, Q., Ball, M. & Loo, Y.-L. It’s time to focus on organic solar cell stability. Nat. Energy 5, 947–949 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kuramoto, N. in Physico-Chemical Principles of Color Chemistry (eds Peters, A. T. & Freeman, H. S.) 196–253 (Springer Netherlands, 1996); https://doi.org/10.1007/978-94-009-0091-2_6.

  • Kosco, J. et al. Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nat. Mater. 19, 559–565 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zbyradowski, M. et al. Triplet-driven chemical reactivity of β-carotene and its biological implications. Nat. Commun. 13, 2474 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tällberg, R., Jelle, B. P., Loonen, R., Gao, T. & Hamdy, M. Comparison of the energy saving potential of adaptive and controllable smart windows: a state-of-the-art review and simulation studies of thermochromic, photochromic and electrochromic technologies. Sol. Energy Mater. Sol. Cells 200, 109828 (2019).

    Article 

    Google Scholar
     

  • Chan, C.-Y. et al. Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nat. Photonics 15, 203–207 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, J.-H. et al. Hydrophilic/hydrophobic silane grafting on TiO2 nanoparticles: photocatalytic paint for atmospheric cleaning. Catalysts 11, 193 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Eggeling, C., Widengren, J., Rigler, R. & Seidel, C. A. M. Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis. Anal. Chem. 70, 2651–2659 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Brien, J., Wilson, I., Orton, T. & Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 267, 5421–5426 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Korycka-Dahl, M. & Richardson, T. Photodegradation of DNA with fluorescent light in the presence of riboflavin, and photoprotection by flavin triplet-state quenchers. Biochim. Biophys. Acta 610, 229–234 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Groeneveld, I., Kanelli, M., Ariese, F. & van Bommel, M. R. Parameters that affect the photodegradation of dyes and pigments in solution and on substrate – an overview. Dyes Pigments 210, 110999 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kosumi, D., Horibe, T., Sugisaki, M., Cogdell, R. J. & Hashimoto, H. Photoprotection mechanism of light-harvesting antenna complex from purple bacteria. J. Phys. Chem. B 120, 951–956 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McNeill, K. & Canonica, S. Triplet state dissolved organic matter in aquatic photochemistry: reaction mechanisms, substrate scope, and photophysical properties. Environ. Sci. Process. Impacts 18, 1381–1399 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Distler, A. et al. Effect of PCBM on the photodegradation kinetics of polymers for organic photovoltaics. Chem. Mater. 24, 4397–4405 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Q. & Lavis, L. D. Development of photostable fluorophores for molecular imaging. Curr. Opin. Chem. Biol. 39, 32–38 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng, Q.-Y. et al. Longevity gene responsible for robust blue organic materials employing thermally activated delayed fluorescence. Nat. Commun. 14, 3927 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. Chemical stabilities of the lowest triplet state in aryl sulfones and aryl phosphine oxides relevant to OLED applications. Chem. Mater. 31, 1507–1519 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, K. et al. New insights about the photostability of DNA/RNA bases: triplet nπ* state leads to effective intersystem crossing in pyrimidinones. J. Phys. Chem. B 125, 2042–2049 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, X. et al. Unraveling the important role of high-lying triplet–lowest excited singlet transitions in achieving highly efficient deep-blue AIE-based OLEDs. Adv. Mater. 33, 2006953 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mukherjee, S., Fedorov, D. A. & Varganov, S. A. Modeling spin-crossover dynamics. Annu. Rev. Phys. Chem. 72, 515–540 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strieth-Kalthoff, F. et al. Delocalized, asynchronous, closed-loop discovery of organic laser emitters. Science 384, eadk9227 (2024).

  • Wang, X. et al. Bayesian-optimization-assisted discovery of stereoselective aluminum complexes for ring-opening polymerization of racemic lactide. Nat. Commun. 14, 3647 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Häse, F., Aldeghi, M., Hickman, R. J., Roch, L. M. & Aspuru-Guzik, A. Gryffin: an algorithm for Bayesian optimization of categorical variables informed by expert knowledge. Appl. Phys. Rev. 8, 031406 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Li, J. et al. Synthesis of many different types of organic small molecules using one automated process. Science 347, 1221–1226 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. Rapid automated iterative small molecule synthesis. Nat. Synth. 3, 1031–1038 (2024).

  • Blair, D. J. et al. Automated iterative Csp3–C bond formation. Nature 604, 92–97 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, G. et al. Renewed prospects for organic photovoltaics. Chem. Rev. 122, 14180–14274 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heitzer, H. M., Marks, T. J. & Ratner, M. A. Molecular donor–bridge–acceptor strategies for high-capacitance organic dielectric materials. J. Am. Chem. Soc. 137, 7189–7196 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bronstein, H., Nielsen, C. B., Schroeder, B. C. & McCulloch, I. The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem. 4, 66–77 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landrum, G. RDKit: open-source cheminformatics software, version 2021_09_01 (Q3 2021) (accessed 12 August 2024); www.rdkit.org.

  • Knapp, D. M., Gillis, E. P. & Burke, M. D. A general solution for unstable boronic acids: slow-release cross-coupling from air-stable MIDA boronates. J. Am. Chem. Soc. 131, 6961–6963 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Refaely-Abramson, S., Baer, R. & Kronik, L. Fundamental and excitation gaps in molecules of relevance for organic photovoltaics from an optimally tuned range-separated hybrid functional. Phys. Rev. B 84, 075144 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Abroshan, H., Coropceanu, V. & Brédas, J.-L. Hyperfluorescence-based emission in purely organic materials: suppression of energy-loss mechanisms via alignment of triplet excited states. ACS Mater. Lett. 2, 1412–1418 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years. Nat. Commun. 12, 5419 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yousif, E. & Haddad, R. Photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus 2, 398 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, B. et al. Understanding the role of removable solid additives: selective interaction contributes to vertical component distributions. Adv. Mater. 35, 2302861 (2023).

    Article 
    CAS 

    Google Scholar
     

  • TheJacksonLab. TheJacksonLab/ClosedLoopTransfer: ClosedLoopTransfer v1.0. Zenodo https://doi.org/10.5281/zenodo.11580889 (2024).



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Apple’s latest iPad Mini is down to its lowest price to date

    If you’re in the market for a highly portable tablet, Apple’s smallest tablet has fallen…

    2 days ago

    Sick Day | Cup of Jo

    Crikey, 100% of Cup of Jo teammates have sick children at home today — colds,…

    2 days ago

    The Financial Freedom Formula Has Changed (2025 Update)

    Can you still achieve financial freedom with real estate investing? Around a decade ago, it…

    2 days ago

    Meta allowed pornographic ads that break its content moderation rules

    Meta owns social media platforms including Facebook and InstagramJRdes / Shutterstock In 2024, Meta allowed…

    2 days ago

    TapTap Mind Provides a Self-Directed Meditation Experience with Apple Watch Double Tap

    Only available for a compatible Apple Watch with Double Tap, the app allow you to…

    2 days ago

    The risk of dementia is even worse than we thought, new research says

    The lifetime risk of dementia after age 55 is double previous estimates. Source link

    2 days ago