Categories: NATURE

Black hole jets on the scale of the cosmic web


  • Hardcastle, M. J. et al. Radio-loud AGN in the first LoTSS data release. The lifetimes and environmental impact of jet-driven sources. Astron. Astrophys. 622, A12 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Perucho, M., Martí, J.-M. & Quilis, V. Long-term FRII jet evolution: clues from three-dimensional simulations. Mon. Not. R. Astron. Soc. 482, 3718–3735 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dabhade, P., Saikia, D. J. & Mahato, M. Decoding the giant extragalactic radio sources. J. Astrophys. Astron. 44, 13 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ayromlou, M., Nelson, D. & Pillepich, A. Feedback reshapes the baryon distribution within haloes, in halo outskirts, and beyond: the closure radius from dwarfs to massive clusters. Mon. Not. R. Astron. Soc. 524, 5391–5410 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Beck, A. M., Hanasz, M., Lesch, H., Remus, R. S. & Stasyszyn, F. A. On the magnetic fields in voids. Mon. Not. R. Astron. Soc. 429, L60–L64 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Vazza, F. et al. Simulations of extragalactic magnetic fields and of their observables. Class. Quantum Gravity 34, 234001 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Willis, A. G., Strom, R. G. & Wilson, A. S. 3C236, DA240; the largest radio sources known. Nature 250, 625–630 (1974).

    Article 
    ADS 

    Google Scholar
     

  • Machalski, J., Kozieł-Wierzbowska, D., Jamrozy, M. & Saikia, D. J. J1420–0545: the radio galaxy larger than 3C 236. Astrophys. J. 679, 149–155 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oei, M. S. S. L. et al. The discovery of a radio galaxy of at least 5 Mpc. Astron. Astrophys. 660, A2 (2022).

    Article 

    Google Scholar
     

  • Correa, C. M. et al. Redshift-space effects in voids and their impact on cosmological tests. Part I: the void size function. Mon. Not. R. Astron. Soc. 500, 911–925 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perucho, M. Dissipative processes and their role in the evolution of radio galaxies. Galaxies 7, 70 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Andernach, H., Jiménez-Andrade, E. F. & Willis, A. G. Discovery of 178 giant radio galaxies in 1059 deg2 of the Rapid ASKAP Continuum Survey at 888 MHz. Galaxies 9, 99 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Dabhade, P. et al. Giant radio galaxies in the LOFAR Two-metre Sky Survey. I. Radio and environmental properties. Astron. Astrophys. 635, A5 (2020).

    Article 

    Google Scholar
     

  • Oei, M. S. S. L. et al. Measuring the giant radio galaxy length distribution with the LoTSS. Astron. Astrophys. 672, A163 (2023).

    Article 

    Google Scholar
     

  • Mostert, R. I. J. et al. Constraining the giant radio galaxy population with machine learning and Bayesian inference. Preprint at https://arxiv.org/abs/2405.00232 (2024).

  • Hardcastle, M. J. et al. The LOFAR Two-Metre Sky Survey. VI. Optical identifications for the second data release. Astron. Astrophys. 678, A151 (2023).

    Article 

    Google Scholar
     

  • Heckman, T. M. & Best, P. N. The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary universe. Annu. Rev. Astron. Astrophys. 52, 589–660 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hardcastle, M. Interpreting radiative efficiency in radio-loud AGNs. Na. Astron. 2, 273–274 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Buttiglione, S. et al. An optical spectroscopic survey of the 3CR sample of radio galaxies with z < 0.3. II. Spectroscopic classes and accretion modes in radio-loud AGN. Astron. Astrophys. 509, A6 (2010).

    Article 

    Google Scholar
     

  • Williams, W. L. et al. LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5 < z < 2.0. Mon. Not. R. Astron. Soc. 475, 3429–3452 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oei, M. S. S. L. et al. Luminous giants populate the dense Cosmic Web. The radio luminosity–environmental density relation for radio galaxies in action. Astron. Astrophys. 686, A137 (2024).

    Article 

    Google Scholar
     

  • Wen, Z. L. & Han, J. L. A catalog of 1.58 million clusters of galaxies identified from the DESI Legacy Imaging Surveys. Astrophys. J. Suppl. Ser. 272, 39 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Planck Collaboration et al. Planck 2015 results. XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources. Astron. Astrophys. 594, A27 (2016).

    Article 

    Google Scholar
     

  • Ineson, J. et al. Radio-loud active galactic nucleus: is there a link between luminosity and cluster environment? Astrophys. J. 770, 136 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ineson, J. et al. The link between accretion mode and environment in radio-loud active galaxies. Mon. Not. R. Astron. Soc. 453, 2682–2706 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Forero-Romero, J. E., Hoffman, Y., Gottlöber, S., Klypin, A. & Yepes, G. A dynamical classification of the cosmic web. Mon. Not. R. Astron. Soc. 396, 1815–1824 (2009).

    Article 
    ADS 

    Google Scholar
     

  • van Weeren, R. J. et al. Radio observations of ZwCl 2341.1+0000: a double radio relic cluster. Astron. Astrophys. 506, 1083–1094 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Hardcastle, M. J. A simulation-based analytic model of radio galaxies. Mon. Not. R. Astron. Soc. 475, 2768–2786 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article 

    Google Scholar
     

  • van Haarlem, M. P. et al. LOFAR: the LOw-Frequency ARray. Astron. Astrophys. 556, A2 (2013).

    Article 

    Google Scholar
     

  • Shimwell, T. W. et al. The LOFAR Two-metre Sky Survey. V. Second data release. Astron. Astrophys. 659, A1 (2022).

    Article 

    Google Scholar
     

  • Shimwell, T. W. et al. The LOFAR Two-metre Sky Survey. I. Survey description and preliminary data release. Astron. Astrophys. 598, A104 (2017).

    Article 

    Google Scholar
     

  • Tasse, C. et al. DDFacet: facet-based radio imaging package. Astrophysics Source Code Library, record ascl:2305.008 (2023).

  • van Weeren, R. J. et al. LOFAR observations of galaxy clusters in HETDEX. Extraction and self-calibration of individual LOFAR targets. Astron. Astrophys. 651, A115 (2021).

    Article 

    Google Scholar
     

  • Offringa, A. R. et al. WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 444, 606–619 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Morabito, L. K. et al. Sub-arcsecond imaging with the International LOFAR Telescope. I. Foundational calibration strategy and pipeline. Astron. Astrophys. 658, A1 (2022).

    Article 

    Google Scholar
     

  • Jackson, N. et al. LBCS: the LOFAR Long-Baseline Calibrator Survey. Astron. Astrophys. 595, A86 (2016).

    Article 

    Google Scholar
     

  • Jackson, N. et al. Sub-arcsecond imaging with the International LOFAR Telescope. II. Completion of the LOFAR Long-Baseline Calibrator Survey. Astron. Astrophys. 658, A2 (2022).

    Article 

    Google Scholar
     

  • Gupta, Y. et al. The upgraded GMRT: opening new windows on the radio Universe. Curr. Sci. 113, 707–714 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Intema, H. T. SPAM: Source Peeling and Atmospheric Modeling. Astrophysics Source Code Library, record ascl:1408.006 (2014).

  • Mohan, N. & Rafferty, D. PyBDSF: Python Blob Detection and Source Finder. Astrophysics Source Code Library, record ascl:1502.007 (2015).

  • Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977).

    Article 
    ADS 

    Google Scholar
     

  • Alam, S. et al. The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III. Astrophys. J. Suppl. Ser. 219, 12 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Dey, A. et al. Overview of the DESI Legacy Imaging Surveys. Astron. J. 157, 168 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Duncan, K. J. All-purpose, all-sky photometric redshifts for the Legacy Imaging Surveys Data Release 8. Mon. Not. R. Astron. Soc. 512, 3662–3683 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oke, J. B. et al. The Keck low-resolution imaging spectrometer. Publ. Astron. Soc. Pac. 107, 375 (1995).

    Article 
    ADS 

    Google Scholar
     

  • McCarthy, J. K. et al. in Proc. SPIE Conference on Optical Astronomical Instrumentation (ed. D’Odorico, S.) 81–92 (SPIE, 1998).

  • Steidel, C. C. et al. A survey of star-forming galaxies in the 1.4 z 2.5 redshift desert: overview. Astrophys. J. 604, 534–550 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rockosi, C. et al. in Proc. Ground-based and Airborne Instrumentation for Astronomy III (eds McLean, I. S., Ramsay, S. K. & Takami, H.) 77350R (SPIE, 2010).

  • Prochaska, J. et al. PypeIt: the Python spectroscopic data reduction pipeline. J. Open Source Softw. 5, 2308 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Dawson, K. S. et al. The Baryon Oscillation Spectroscopic Survey of SDSS-III. Astron. J. 145, 10 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at https://arxiv.org/abs/1612.05560 (2019).

  • Jarrett, T. H. et al. The Spitzer–WISE survey of the ecliptic poles. Astrophys. J. 735, 112 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Calistro Rivera, G., Lusso, E., Hennawi, J. F. & Hogg, D. W. AGNfitter: a Bayesian MCMC approach to fitting spectral energy distributions of AGNs. Astrophys. J. 833, 98 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Martínez-Ramírez, L. N. et al. AGNFITTER-RX: Modeling the radio-to-X-ray spectral energy distributions of AGNs. Astron. Astrophys. 688, A46 (2024).

  • Pasini, T. et al. Radio galaxies in galaxy groups: kinematics, scaling relations, and AGN feedback. Mon. Not. R. Astron. Soc. 505, 2628–2637 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arnaud, M. et al. The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the YSZ – M500 relation. Astron. Astrophys. 517, A92 (2010).

    Article 

    Google Scholar
     

  • Sun, M. et al. The pressure profiles of hot gas in local galaxy groups. Astrophys. J. Lett. 727, L49 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Cooke, R. J. & Fumagalli, M. Measurement of the primordial helium abundance from the intergalactic medium. Nat. Astron. 2, 957–961 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lovisari, L., Reiprich, T. H. & Schellenberger, G. Scaling properties of a complete X-ray selected galaxy group sample. Astron. Astrophys. 573, A118 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ricciardelli, E., Quilis, V. & Planelles, S. The structure of cosmic voids in a ΛCDM Universe. Mon. Not. R. Astron. Soc. 434, 1192–1204 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Upton Sanderbeck, P. R., D’Aloisio, A. & McQuinn, M. J. Models of the thermal evolution of the intergalactic medium after reionization. Mon. Not. R. Astron. Soc. 460, 1885–1897 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Tuominen, T. et al. An EAGLE view of the missing baryons. Astron. Astrophys. 646, A156 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hardcastle, M. J. & Krause, M. G. H. Numerical modelling of the lobes of radio galaxies in cluster environments. Mon. Not. R. Astron. Soc. 430, 174–196 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Barrows, R. S., Comerford, J. M., Stern, D. & Assef, R. J. A catalog of host galaxies for WISE-selected AGN: connecting host properties with nuclear activity and identifying contaminants. Astrophys. J. 922, 179 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, Z.-F., Pan, D.-S., Pang, T.-T. & Huang, Y. A catalog of quasar properties from the Baryon Oscillation Spectroscopic Survey. Astrophys. J. Suppl. Ser. 234, 16 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Sweijen, F. GitHub repository for legacystamps. https://github.com/tikk3r/legacystamps (2021).

  • LOFAR Collaboration. Website for LOFAR surveys data, including LoTSS DR2. https://lofar-surveys.org (2022).

  • Hardcastle, M. J. GitHub repository for ‘A simulation-based analytic model of radio galaxies’. https://github.com/mhardcastle/analytic (2021).

  • Oei, M. S. S. L. Code Ocean capsule for ‘Black hole jets on the scale of the cosmic web’. https://codeocean.com/capsule/3908804/tree (2024).

  • Lang, D., Hogg, D. W. & Schlegel, D. J. WISE photometry for 400 million SDSS sources. Astron. J. 151, 36 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Gordon, Y. A. et al. A quick look at the 3 GHz radio sky. I. Source statistics from the Very Large Array Sky Survey. Astrophys. J. Suppl. Ser. 255, 30 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Helfand, D. J., White, R. L. & Becker, R. H. The last of FIRST: the final catalog and source identifications. Astrophys. J. 801, 26 (2015).

    Article 
    ADS 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Note-Taking App Craft Updated With New Task Management Features and More

    The standout feature is the ability to create and stricter your ideas into a beautiful…

    15 hours ago

    Monster Energy’s Ayumu Hirano Claims Victory in Men’s Snowboard Halfpipe at the FIS World Cup at Copper Mountain

    Monster Energy congratulates team rider Ayumu Hirano on claiming first place in the Men's Snowboard…

    16 hours ago

    Mother of all bubbles: This is America’s ‘fatal flaw,’ expert says

    © 2024 Fortune Media IP Limited. All Rights Reserved. Use of this site constitutes acceptance…

    16 hours ago

    Qualcomm wins a legal battle over Arm chip licensing

    A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…

    3 days ago

    Three Comic/Movie/Band Reviews | Cup of Jo

    Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…

    3 days ago

    Actually, Flipping Properties Can Improve Housing Affordability—Here’s How

    15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…

    3 days ago