Categories: NATURE

Antiferromagnetic phase transition in a 3D fermionic Hubbard model


  • Hubbard, J. Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A 276, 238–257 (1963).

    Article 

    Google Scholar
     

  • Esslinger, T. Fermi-Hubbard physics with atoms in an optical lattice. Annu. Rev. Condens. Matter Phys. 1, 129–152 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Bohrdt, A., Homeier, L., Reinmoser, C., Demler, E. & Grusdt, F. Exploration of doped quantum magnets with ultracold atoms. Ann. Phys. 435, 168651 (2021).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Zheng, B.-X. et al. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Xiang, T. & Wu, C. D-wave Superconductivity (Cambridge Univ. Press, 2022).

  • Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scalapino, D. J., Loh, E.Jr & Hirsch, J. E. d-wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190–8192 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Hart, R. A. et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature 519, 211–214 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mazurenko, A. et al. A cold-atom Fermi-Hubbard antiferromagnet. Nature 545, 462–466 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campostrini, M., Hasenbusch, M., Pelissetto, A., Rossi, P. & Vicari, E. Critical exponents and equation of state of the three-dimensional Heisenberg universality class. Phys. Rev. B 65, 144520 (2002).

    Article 

    Google Scholar
     

  • Arovas, D. P., Berg, E., Kivelson, S. A. & Raghu, S. The Hubbard model. Annu. Rev. Condens. Matter Phys. 13, 239–274 (2022).

    Article 

    Google Scholar
     

  • Jördens, R., Strohmaier, N., Günter, K., Moritz, H. & Esslinger, T. A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Schneider, U. et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Auerbach, A. Interacting Electrons and Quantum Magnetism (Springer, 1998).

  • Qin, M., Schäfer, T., Andergassen, S., Corboz, P. & Gull, E. The Hubbard model: a computational perspective. Annu. Rev. Condens. Matter Phys. 13, 275–302 (2022).

    Article 

    Google Scholar
     

  • Giamarchi, T. Quantum Physics in One Dimension (Clarendon Press, 2003).

  • Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 77, 259–315 (2005).

    Article 
    MathSciNet 

    Google Scholar
     

  • Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greif, D., Uehlinger, T., Jotzu, G., Tarruell, L. & Esslinger, T. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science 340, 1307–1310 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gross, C. & Bakr, W. S. Quantum gas microscopy for single atom and spin detection. Nat. Phys. 17, 1316–1323 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Norman, M. R. The challenge of unconventional superconductivity. Science 332, 196–200 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Navon, N., Smith, R. P. & Hadzibabic, Z. Quantum gases in optical boxes. Nat. Phys. 17, 1334–1341 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Second sound attenuation near quantum criticality. Science 375, 528–533 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho, T.-L. & Zhou, Q. Squeezing out the entropy of fermions in optical lattices. Proc. Natl Acad. Sci. USA 106, 6916–6920 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corcovilos, T. A., Baur, S. K., Hitchcock, J. M., Mueller, E. J. & Hulet, R. G. Detecting antiferromagnetism of atoms in an optical lattice via optical Bragg scattering. Phys. Rev. A 81, 013415 (2010).

    Article 

    Google Scholar
     

  • Staudt, R., Dzierzawa, M. & Muramatsu, A. Phase diagram of the three-dimensional Hubbard model at half filling. Eur. Phys. J. B 17, 411–415 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Kozik, E., Burovski, E., Scarola, V. W. & Troyer, M. Néel temperature and thermodynamics of the half-filled three-dimensional Hubbard model by diagrammatic determinant Monte Carlo. Phys. Rev. B 87, 205102 (2013).

    Article 

    Google Scholar
     

  • Song, Y.-F., Deng, Y. & He, Y.-Y. Extended metal-insulator crossover with strong antiferromagnetic spin correlation in halffilled 3D Hubbard model. Preprint at https://arxiv.org/abs/2404.08745 (2024).

  • Hirsch, J. E. Simulations of the three-dimensional Hubbard model: Half-filled band sector. Phys. Rev. B 35, 1851–1859 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Domb, C. & Lebowitz, J. L. (eds) Phase Transitions and Critical Phenomena (Elsevier, 2000).

  • Paiva, T. et al. Cooling atomic gases with disorder. Phys. Rev. Lett. 115, 240402 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Duan, L.-M., Demler, E. & Lukin, M. D. Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Schäfer, T., Katanin, A. A., Held, K. & Toschi, A. Interplay of correlations and Kohn anomalies in three dimensions: quantum criticality with a twist. Phys. Rev. Lett. 119, 046402 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Lenihan, C., Kim, A. J., Šimkovic, F. & Kozik, E. Evaluating second-order phase transitions with diagrammatic Monte Carlo: Néel transition in the doped three-dimensional Hubbard model. Phys. Rev. Lett. 129, 107202 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vijayan, J. et al. Time-resolved observation of spin-charge deconfinement in fermionic Hubbard chains. Science 367, 186–189 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Senaratne, R. et al. Spin-charge separation in a one-dimensional Fermi gas with tunable interactions. Science 376, 1305–1308 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Observation and quantification of the pseudogap in unitary Fermi gases. Nature 626, 288–293 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stewart, J., Gaebler, J. & Jin, D. Using photoemission spectroscopy to probe a strongly interacting Fermi gas. Nature 454, 744–747 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ying, T. et al. Determinant quantum Monte Carlo study of d-wave pairing in the plaquette Hubbard Hamiltonian. Phys. Rev. B 90, 075121 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hofstetter, W., Cirac, J. I., Zoller, P., Demler, E. & Lukin, M. D. High-temperature superfluidity of Fermionic atoms in optical lattices. Phys. Rev. Lett. 89, 220407 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hartke, T., Oreg, B., Turnbaugh, C., Jia, N. & Zwierlein, M. Direct observation of nonlocal fermion pairing in an attractive Fermi-Hubbard gas. Science 381, 82–86 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Q., Stajic, J., Tan, S. & Levin, K. BCS-BEC crossover: from high temperature superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Zwerger, W. (ed.) The BCS-BEC Crossover and the Unitary Fermi Gas (Springer, 2011).

  • Yao, X.-C. et al. Observation of coupled vortex lattices in a mass-imbalance Bose and Fermi superfluid mixture. Phys. Rev. Lett. 117, 145301 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, X.-Q. et al. Oscillatory-like expansion of a Fermionic superfluid. Sci. Bull. 65, 7–11 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X.-P. et al. Universal dynamical scaling of quasi-two-dimensional vortices in a strongly interacting fermionic superfluid. Phys. Rev. Lett. 126, 185302 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hasegawa, S., Ito, H., Toyoda, H. & Hayasaki, Y. Diffraction-limited ring beam generated by radial grating. OSA Contin. 1, 283–294 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Murthy, P. A. et al. Matter-wave Fourier optics with a strongly interacting two-dimensional Fermi gas. Phys. Rev. A 90, 043611 (2014).

    Article 

    Google Scholar
     

  • Ketterle, W. & Zwierlein, M. W. Making, probing and understanding ultracold Fermi gases. Riv. del Nuovo Cim. 31, 247–422 (2008).

    CAS 

    Google Scholar
     

  • Ji, Y. et al. Stability of the repulsive Fermi gas with contact interactions. Phys. Rev. Lett. 129, 203402 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. 80, 885–964 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Soifer, V. A. (ed.) Methods for Computer Design of Diffractive Optical Elements (Willey, 2002).

  • Werner, F., Parcollet, O., Georges, A. & Hassan, S. R. Interaction-induced adiabatic cooling and antiferromagnetism of cold fermions in optical lattices. Phys. Rev. Lett. 95, 056401 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Denschlag, J. H. et al. A Bose-Einstein condensate in an optical lattice. J. Phys. B 35, 3095 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y.-P. et al. A quantum degenerate Bose–Fermi mixture of 41K and 6Li. J. Phys. B 50, 094001 (2017).

    Article 

    Google Scholar
     

  • Schäfer, F., Fukuhara, T., Sugawa, S., Takasu, Y. & Takahashi, Y. Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys. 2, 411–425 (2020).

    Article 

    Google Scholar
     

  • Campbell, G. K. et al. Imaging the Mott insulator shells by using atomic clock shifts. Science 313, 649–652 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greif, D., Tarruell, L., Uehlinger, T., Jördens, R. & Esslinger, T. Probing nearest-neighbor correlations of ultracold fermions in an optical lattice. Phys. Rev. Lett. 106, 145302 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Tokuno, A. & Giamarchi, T. Spin correlations and doublon production rate for fermionic atoms in modulated optical lattices. Phys. Rev. A 85, 061603 (2012).

    Article 

    Google Scholar
     

  • Birkl, G., Gatzke, M., Deutsch, I. H., Rolston, S. L. & Phillips, W. D. Bragg scattering from atoms in optical lattices. Phys. Rev. Lett. 75, 2823–2826 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyake, H. et al. Bragg scattering as a probe of atomic wave functions and quantum phase transitions in optical lattices. Phys. Rev. Lett. 107, 175302 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Blankenbecler, R., Scalapino, D. & Sugar, R. Monte Carlo calculations of coupled boson-fermion systems. I. Phys. Rev. D 24, 2278–2286 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Hirsch, J. E. Discrete Hubbard-Stratonovich transformation for fermion lattice models. Phys. Rev. B 28, 4059–4061 (1983).

    Article 

    Google Scholar
     

  • He, Y.-Y., Qin, M., Shi, H., Lu, Z.-Y. & Zhang, S. Finite-temperature auxiliary-field quantum Monte Carlo: Self-consistent constraint and systematic approach to low temperatures. Phys. Rev. B 99, 045108 (2019).

    Article 
    CAS 

    Google Scholar
     

  • McDaniel, T., D’Azevedo, E. F., Li, Y. W., Wong, K. & Kent, P. R. C. Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo. J. Chem. Phys. 147, 174107 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scalettar, R. T., Noack, R. M. & Singh, R. R. P. Ergodicity at large couplings with the determinant Monte Carlo algorithm. Phys. Rev. B 44, 10502 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Khatami, E. Three-dimensional Hubbard model in the thermodynamic limit. Phys. Rev. B 94, 125114 (2016).

    Article 

    Google Scholar
     

  • Yao, X.-C. Data for “Antiferromagnetic phase transition in a 3D fermionic Hubbard model” (v.1.0). Zenodo https://doi.org/10.5281/zenodo.11195759 (2024).



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Researchers suggest OpenAI trained AI models on paywalled O’Reilly books

    OpenAI has been accused by many parties of training its AI on copyrighted content sans…

    23 hours ago

    A Q&A With ‘The White Lotus’ Costume Designer

    Are you watching The White Lotus season three? I’m excited for the 90-minute finale coming…

    1 day ago

    Barista FIRE at 36 with ONLY $500K by Trading “Stuff” for Substance

    Julie Rose “semi-retired” at just 36 years old with only $500K, trading her corporate job…

    1 day ago

    US government fired researchers running a crucial drug use survey

    The only nation-wide assessment of drug use in the US is a critical tool in…

    1 day ago

    The Musical is a Classic and Tasty Love Story for the Ages

    Instead of Romeo and Juliet, the game tells the story of Peanut Butter and Jelly…

    1 day ago

    Dollar steady as zero hour on "Liberation Day" closes in

    Dollar steady as zero hour on "Liberation Day" closes in Source link

    1 day ago