Categories: NATURE

Antiferromagnetic phase transition in a 3D fermionic Hubbard model


  • Hubbard, J. Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A 276, 238–257 (1963).

    Article 

    Google Scholar
     

  • Esslinger, T. Fermi-Hubbard physics with atoms in an optical lattice. Annu. Rev. Condens. Matter Phys. 1, 129–152 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Bohrdt, A., Homeier, L., Reinmoser, C., Demler, E. & Grusdt, F. Exploration of doped quantum magnets with ultracold atoms. Ann. Phys. 435, 168651 (2021).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Zheng, B.-X. et al. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Xiang, T. & Wu, C. D-wave Superconductivity (Cambridge Univ. Press, 2022).

  • Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scalapino, D. J., Loh, E.Jr & Hirsch, J. E. d-wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190–8192 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Hart, R. A. et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature 519, 211–214 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mazurenko, A. et al. A cold-atom Fermi-Hubbard antiferromagnet. Nature 545, 462–466 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campostrini, M., Hasenbusch, M., Pelissetto, A., Rossi, P. & Vicari, E. Critical exponents and equation of state of the three-dimensional Heisenberg universality class. Phys. Rev. B 65, 144520 (2002).

    Article 

    Google Scholar
     

  • Arovas, D. P., Berg, E., Kivelson, S. A. & Raghu, S. The Hubbard model. Annu. Rev. Condens. Matter Phys. 13, 239–274 (2022).

    Article 

    Google Scholar
     

  • Jördens, R., Strohmaier, N., Günter, K., Moritz, H. & Esslinger, T. A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Schneider, U. et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Auerbach, A. Interacting Electrons and Quantum Magnetism (Springer, 1998).

  • Qin, M., Schäfer, T., Andergassen, S., Corboz, P. & Gull, E. The Hubbard model: a computational perspective. Annu. Rev. Condens. Matter Phys. 13, 275–302 (2022).

    Article 

    Google Scholar
     

  • Giamarchi, T. Quantum Physics in One Dimension (Clarendon Press, 2003).

  • Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 77, 259–315 (2005).

    Article 
    MathSciNet 

    Google Scholar
     

  • Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greif, D., Uehlinger, T., Jotzu, G., Tarruell, L. & Esslinger, T. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science 340, 1307–1310 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gross, C. & Bakr, W. S. Quantum gas microscopy for single atom and spin detection. Nat. Phys. 17, 1316–1323 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Norman, M. R. The challenge of unconventional superconductivity. Science 332, 196–200 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Navon, N., Smith, R. P. & Hadzibabic, Z. Quantum gases in optical boxes. Nat. Phys. 17, 1334–1341 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Second sound attenuation near quantum criticality. Science 375, 528–533 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho, T.-L. & Zhou, Q. Squeezing out the entropy of fermions in optical lattices. Proc. Natl Acad. Sci. USA 106, 6916–6920 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corcovilos, T. A., Baur, S. K., Hitchcock, J. M., Mueller, E. J. & Hulet, R. G. Detecting antiferromagnetism of atoms in an optical lattice via optical Bragg scattering. Phys. Rev. A 81, 013415 (2010).

    Article 

    Google Scholar
     

  • Staudt, R., Dzierzawa, M. & Muramatsu, A. Phase diagram of the three-dimensional Hubbard model at half filling. Eur. Phys. J. B 17, 411–415 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Kozik, E., Burovski, E., Scarola, V. W. & Troyer, M. Néel temperature and thermodynamics of the half-filled three-dimensional Hubbard model by diagrammatic determinant Monte Carlo. Phys. Rev. B 87, 205102 (2013).

    Article 

    Google Scholar
     

  • Song, Y.-F., Deng, Y. & He, Y.-Y. Extended metal-insulator crossover with strong antiferromagnetic spin correlation in halffilled 3D Hubbard model. Preprint at https://arxiv.org/abs/2404.08745 (2024).

  • Hirsch, J. E. Simulations of the three-dimensional Hubbard model: Half-filled band sector. Phys. Rev. B 35, 1851–1859 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Domb, C. & Lebowitz, J. L. (eds) Phase Transitions and Critical Phenomena (Elsevier, 2000).

  • Paiva, T. et al. Cooling atomic gases with disorder. Phys. Rev. Lett. 115, 240402 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Duan, L.-M., Demler, E. & Lukin, M. D. Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Schäfer, T., Katanin, A. A., Held, K. & Toschi, A. Interplay of correlations and Kohn anomalies in three dimensions: quantum criticality with a twist. Phys. Rev. Lett. 119, 046402 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Lenihan, C., Kim, A. J., Šimkovic, F. & Kozik, E. Evaluating second-order phase transitions with diagrammatic Monte Carlo: Néel transition in the doped three-dimensional Hubbard model. Phys. Rev. Lett. 129, 107202 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vijayan, J. et al. Time-resolved observation of spin-charge deconfinement in fermionic Hubbard chains. Science 367, 186–189 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Senaratne, R. et al. Spin-charge separation in a one-dimensional Fermi gas with tunable interactions. Science 376, 1305–1308 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Observation and quantification of the pseudogap in unitary Fermi gases. Nature 626, 288–293 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stewart, J., Gaebler, J. & Jin, D. Using photoemission spectroscopy to probe a strongly interacting Fermi gas. Nature 454, 744–747 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ying, T. et al. Determinant quantum Monte Carlo study of d-wave pairing in the plaquette Hubbard Hamiltonian. Phys. Rev. B 90, 075121 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hofstetter, W., Cirac, J. I., Zoller, P., Demler, E. & Lukin, M. D. High-temperature superfluidity of Fermionic atoms in optical lattices. Phys. Rev. Lett. 89, 220407 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hartke, T., Oreg, B., Turnbaugh, C., Jia, N. & Zwierlein, M. Direct observation of nonlocal fermion pairing in an attractive Fermi-Hubbard gas. Science 381, 82–86 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Q., Stajic, J., Tan, S. & Levin, K. BCS-BEC crossover: from high temperature superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Zwerger, W. (ed.) The BCS-BEC Crossover and the Unitary Fermi Gas (Springer, 2011).

  • Yao, X.-C. et al. Observation of coupled vortex lattices in a mass-imbalance Bose and Fermi superfluid mixture. Phys. Rev. Lett. 117, 145301 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, X.-Q. et al. Oscillatory-like expansion of a Fermionic superfluid. Sci. Bull. 65, 7–11 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X.-P. et al. Universal dynamical scaling of quasi-two-dimensional vortices in a strongly interacting fermionic superfluid. Phys. Rev. Lett. 126, 185302 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hasegawa, S., Ito, H., Toyoda, H. & Hayasaki, Y. Diffraction-limited ring beam generated by radial grating. OSA Contin. 1, 283–294 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Murthy, P. A. et al. Matter-wave Fourier optics with a strongly interacting two-dimensional Fermi gas. Phys. Rev. A 90, 043611 (2014).

    Article 

    Google Scholar
     

  • Ketterle, W. & Zwierlein, M. W. Making, probing and understanding ultracold Fermi gases. Riv. del Nuovo Cim. 31, 247–422 (2008).

    CAS 

    Google Scholar
     

  • Ji, Y. et al. Stability of the repulsive Fermi gas with contact interactions. Phys. Rev. Lett. 129, 203402 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. 80, 885–964 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Soifer, V. A. (ed.) Methods for Computer Design of Diffractive Optical Elements (Willey, 2002).

  • Werner, F., Parcollet, O., Georges, A. & Hassan, S. R. Interaction-induced adiabatic cooling and antiferromagnetism of cold fermions in optical lattices. Phys. Rev. Lett. 95, 056401 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Denschlag, J. H. et al. A Bose-Einstein condensate in an optical lattice. J. Phys. B 35, 3095 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y.-P. et al. A quantum degenerate Bose–Fermi mixture of 41K and 6Li. J. Phys. B 50, 094001 (2017).

    Article 

    Google Scholar
     

  • Schäfer, F., Fukuhara, T., Sugawa, S., Takasu, Y. & Takahashi, Y. Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys. 2, 411–425 (2020).

    Article 

    Google Scholar
     

  • Campbell, G. K. et al. Imaging the Mott insulator shells by using atomic clock shifts. Science 313, 649–652 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greif, D., Tarruell, L., Uehlinger, T., Jördens, R. & Esslinger, T. Probing nearest-neighbor correlations of ultracold fermions in an optical lattice. Phys. Rev. Lett. 106, 145302 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Tokuno, A. & Giamarchi, T. Spin correlations and doublon production rate for fermionic atoms in modulated optical lattices. Phys. Rev. A 85, 061603 (2012).

    Article 

    Google Scholar
     

  • Birkl, G., Gatzke, M., Deutsch, I. H., Rolston, S. L. & Phillips, W. D. Bragg scattering from atoms in optical lattices. Phys. Rev. Lett. 75, 2823–2826 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyake, H. et al. Bragg scattering as a probe of atomic wave functions and quantum phase transitions in optical lattices. Phys. Rev. Lett. 107, 175302 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Blankenbecler, R., Scalapino, D. & Sugar, R. Monte Carlo calculations of coupled boson-fermion systems. I. Phys. Rev. D 24, 2278–2286 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Hirsch, J. E. Discrete Hubbard-Stratonovich transformation for fermion lattice models. Phys. Rev. B 28, 4059–4061 (1983).

    Article 

    Google Scholar
     

  • He, Y.-Y., Qin, M., Shi, H., Lu, Z.-Y. & Zhang, S. Finite-temperature auxiliary-field quantum Monte Carlo: Self-consistent constraint and systematic approach to low temperatures. Phys. Rev. B 99, 045108 (2019).

    Article 
    CAS 

    Google Scholar
     

  • McDaniel, T., D’Azevedo, E. F., Li, Y. W., Wong, K. & Kent, P. R. C. Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo. J. Chem. Phys. 147, 174107 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scalettar, R. T., Noack, R. M. & Singh, R. R. P. Ergodicity at large couplings with the determinant Monte Carlo algorithm. Phys. Rev. B 44, 10502 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Khatami, E. Three-dimensional Hubbard model in the thermodynamic limit. Phys. Rev. B 94, 125114 (2016).

    Article 

    Google Scholar
     

  • Yao, X.-C. Data for “Antiferromagnetic phase transition in a 3D fermionic Hubbard model” (v.1.0). Zenodo https://doi.org/10.5281/zenodo.11195759 (2024).



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Qualcomm wins a legal battle over Arm chip licensing

    A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…

    1 day ago

    Three Comic/Movie/Band Reviews | Cup of Jo

    Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…

    1 day ago

    Actually, Flipping Properties Can Improve Housing Affordability—Here’s How

    15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…

    1 day ago

    Is solar geoengineering research having its moment?

    Particles in ship exhaust inadvertently cause cloud brightening – some geoengineering projects would try to…

    2 days ago

    5 Great Games to Put You in the Winter Mood

    The weather outside is frightful, but the iOS games are so delightful, let it play,…

    2 days ago

    Banner year for fixed-income funds leaves TCW and Western Asset behind

    A few flagship bond funds from some big-name Southern California-based firms saw outflows of more…

    2 days ago