Categories: NATURE

An engineered enzyme embedded into PLA to make self-biodegradable plastic


  • Plastics – the fast facts 2023. Plastics Europe https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/ (2023).

  • Rhodes, C. J. Solving the plastic problem: from cradle to grave, to reincarnation. Sci. Prog. 102, 218–248 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geyer, R. in Plastic Waste and Recycling (ed. Letcher, T. M.) Ch. 2 (Academic, 2020).

  • Iwata, T. Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew. Chemie Int. Ed. 54, 3210–3215 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bioplastics Market Development Update 2022 (European Bioplastics, 2022); https://docs.european-bioplastics.org/publications/market_data/2022/Report_Bioplastics_Market_Data_2022_short_version.pdf.

  • Kale, G., Auras, R. & Singh, S. P. Comparison of the degradability of poly(lactide) packages in composting and ambient exposure conditions. Packag. Technol. Sci. 20, 49–70 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Napper, I. E. & Thompson, R. C. Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period. Environ. Sci. Technol. 53, 4775–4783 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Teixeira, S., Eblagon, K. M., Miranda, F., R. Pereira, M. F. & Figueiredo, J. L. Towards controlled degradation of poly(lactic) acid in technical applications. C 7, 42 (2021).

  • Datta, R. & Henry, M. Lactic acid: recent advances in products, processes and technologies – a review. J. Chem. Technol. Biotechnol. 81, 1119–1129 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Dorgan, J. R., Lehermeier, H. & Mang, M. Thermal and rheological properties of commercial-grade poly(lactic acid)s. J. Polym. Environ. 8, 1–9 (2000).

    Article 

    Google Scholar
     

  • Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X. & Auras, R. Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 107, 333–366 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choe, S., Kim, Y., Won, Y. & Myung, J. Bridging three gaps in biodegradable plastics: misconceptions and truths about biodegradation. Front. Chem. 9, 671750 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuji, H. & Suzuyoshi, K. Environmental degradation of biodegradable polyesters 1. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and and poly(L-lactide) films in controlled static seawater. Polym. Degrad. Stab. 75, 347–355 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Karamanlioglu, M. & Robson, G. D. The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym. Degrad. Stab. 98, 2063–2071 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Siracusa, V. Microbial degradation of synthetic biopolymers waste. Polymers 11, 1066 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, D. F. Enzymic hydrolysis of polylactic acid. Eng. Med. 10, 5–7 (1981).

    Article 

    Google Scholar
     

  • Tokiwa, Y. & Calabia, B. P. Biodegradability and biodegradation of poly(lactide). Appl. Microbiol. Biotechnol. 72, 244–251 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arena, M., Abbate, C., Fukushima, K. & Gennari, M. Degradation of poly (lactic acid) and nanocomposites by Bacillus licheniformis. Environ. Sci. Pollut. Res. 18, 865–870 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Prema, S. & Palempalli, U. M. D. Degradation of polylactide plastic by PLA depolymerase isolated from thermophilic Bacillus. Int. J. Curr. Microbiol. App. Sci 4, 645–654 (2015).

    CAS 

    Google Scholar
     

  • Zaaba, N. F. & Jaafar, M. A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym. Eng. Sci. 60, 2061–2075 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pranamuda, H., Tokiwa, Y. & Tanaka, H. Polylactide degradation by an Amycolatopsis sp. Appl. Environ. Microbiol. 63, 1637–1640 (1997).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urbanek, A. K. et al. Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. Biochim. Biophys. Acta Proteins Proteom. 1868, 140315 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oda, Y., Yonetsu, A., Urakami, T. & Tonomura, K. Degradation of polylactide by commercial proteases. J. Polym. Environ. 8, 29–32 (2000).

    Article 

    Google Scholar
     

  • Barbier, T., Ferreira, F., Bataille, C., Dever, J. & Barbier, J. Method for preparing a polymer/biological entities blend. Patent WO2013093355 (2011).

  • Khan, I., Nagarjuna, R., Dutta, J. R. & Ganesan, R. Enzyme-embedded degradation of poly(ϵ-caprolactone) using lipase-derived from probiotic Lactobacillus plantarum. ACS Omega 4, 2844–2852 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganesh, M. & Gross, R. Embedding enzymes to control biomaterial lifetime. ACS Symp. Ser. 1043, 375–384 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Q., Hiyama, M., Kabe, T., Kimura, S. & Iwata, T. Enzymatic self-biodegradation of poly(L-lactic acid) films by embedded heat-treated and immobilized proteinase K. Biomacromolecules 21, 3301–3307 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greene, A. F. et al. 3D-printed enzyme-embedded plastics. Biomacromolecules 22, 1999–2009 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DelRe, C. et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature 592, 558–563 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Q. Y., Kimura, S. & Iwata, T. Thermal embedding of Humicola insolens cutinase: a strategy for improving polyester biodegradation in seawater. Biomacromolecules 24, 5836–5846 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Q. Y., Kimura, S. & Iwata, T. Development of self-degradable aliphatic polyesters by embedding lipases via melt extrusion. Polym. Degrad. Stab. 190, 109647 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, C. et al. Investigation of the thermal stability of proteinase K for the melt processing of poly(L-lactide). Biomacromolecules 23, 4841–4850 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sukkhum, S., Tokuyama, S. & Kitpreechavanich, V. Development of fermentation process for PLA-degrading enzyme production by a new thermophilic Actinomadura sp. T16-1. Biotechnol. Bioprocess Eng. 14, 302–306 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Sukkhum, S., Tokuyama, S., Tamura, T. & Kitpreechavanich, V. A novel poly (L-lactide) degrading actinomycetes isolated from Thai forest soil, phylogenic relationship and the enzyme characterization. J. Gen. Appl. Microbiol. 55, 459–467 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rawlings, N. D. & Barrett, A. J. Evolutionary families of peptidases. Biochem. J. 290, 205–218 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azrin, N. A. M., Ali, M. S. M., Rahman, R. N. Z. R. A., Oslan, S. N. & Noor, N. D. M. Versatility of subtilisin: a review on structure, characteristics, and applications. Biotechnol. Appl. Biochem. https://doi.org/10.1002/bab.2309 (2022).

  • Tatàno, F., Pagliaro, G., Di Giovanni, P., Floriani, E. & Mangani, F. Biowaste home composting: experimental process monitoring and quality control. Waste Manag. 38, 72–85 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Wilmouth, R. C. et al. X-ray snapshots of serine protease catalysis reveal a tetrahedral intermediate. Nat. Struct. Biol. 8, 689–694 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hedstrom, L. Serine protease mechanism and specificity. Chem. Rev. 102, 4501–4523 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peek, K., Daniel, R. M., Monk, C., Parker, L. & Coolbear, T. Purification and characterization of a thermostable proteinase isolated from Thermus sp. strain Rt41A. Eur. J. Biochem. 207, 1035–1044 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guemard, E. & Dalibey, M. Liquid composition comprising biological entities and uses thereof. Patent WO2019043145 (2018).

  • Fukuda, N., Tsuji, H. & Ohnishi, Y. Physical properties and enzymatic hydrolysis of poly(L-lactide)-CaCO3 composites. Polym. Degrad. Stab. 78, 119–127 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Chateau, M. & Rousselle, J.-P. Masterbatch composition comprising a high concentration of biological entities. Patent WO2016198650 (2016).

  • Ye, G., Gu, T., Chen, B., Bi, H. & Hu, Y. Mechanical, thermal properties and shape memory behaviors of PLA/PCL/PLA-g-GMA blends. Polym. Eng. Sci. 63, 2084–2092 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Aliotta, L., Gigante, V., Geerinck, R., Coltelli, M. B. & Lazzeri, A. Micromechanical analysis and fracture mechanics of poly(lactic acid) (PLA)/polycaprolactone (PCL) binary blends. Polym. Test. 121, 107984 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, D. et al. Characterization of biodegradable food packaging films prepared with polyamide 4: influence of molecular weight and environmental humidity. Food Bioeng. 1, 276–288 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jeong, H. et al. Mechanical properties and cytotoxicity of PLA/PCL films. Biomed. Eng. Lett. 8, 267–272 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bher, A., Cho, Y. & Auras, R. Boosting degradation of biodegradable polymers. Macromol. Rapid Commun. 44, e2200769 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • García-Depraect, O. et al. Enhancement of biogas production rate from bioplastics by alkaline pretreatment. Waste Manag. 164, 154–161 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Li, H. et al. The Sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madeira, F. et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 50, W276–W279 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. & Naismith, J. H. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 8, 91 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tartof, K. D. Improved media for growing plasmid and cosmid clones. Bethesda Res. Lab. Focus 9, 12 (1987).


    Google Scholar
     

  • Gasteiger, E. et al. The Proteomics Protocols Handbook (Humana, 2005); https://doi.org/10.1385/1592598900.

  • Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. Sect. D 67, 293–302 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171–1179 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D 66, 213–221 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D 66, 486–501 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Krivov, G. G., Shapovalov, M. V. & Dunbrack, R. L. Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77, 778–795 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olsson, M. H. M., SØndergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaminski, G. A., Friesner, R. A., Tirado-rives, J. & Jorgensen, W. L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001).

    Article 
    CAS 

    Google Scholar
     

  • McAliley, J. H. & Bruce, D. A. Development of force field parameters for molecular simulation of polylactide. J. Chem. Theory Comput. 7, 3756–3767 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116–122 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheatham, T. E., Miller, J. L., Fox, T., Darden, T. A. & Kollman, P. A. Molecular dynamics simulations on solvated biomolecular systems: the particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J. Am. Chem. Soc. 117, 4193–4194 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Kumari, R., Kumar, R. & Lynn, A. g-mmpbsa – a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 54, 1951–1962 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daudé, D., Topham, C. M., Remaud-Siméon, M. & André, I. Probing impact of active site residue mutations on stability and activity of Neisseria polysaccharea amylosucrase. Protein Sci. 22, 1754–1765 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henton, D. E., Gruber, P., Lunt, J. & Randall, J. in Natural Fibers, Biopolymers, and Biocomposites (eds Mohanty, A. K., Misra, M. & Drzal, L. T.) Ch. 16 (CRC, 2005).

  • Fischer, E. W., Sterzel, H. J. & Wegner, G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Zeitschrift Zeitschrift für Polym. 251, 980–990 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Cresson, R. et al. Etude interlaboratoires pour l’harmonisation des protocoles de mesure du potentiel bio-méthanogène des matrices solides hétérogènes (ADEME, 2014).



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Google has given Anthropic more funding than previously known, show new filings

    Anthropic, a San Francisco startup often cast as an independent player in the AI race,…

    6 hours ago

    My Messy Road to Not Drinking

    I had stints where I didn’t drink, but that dry January felt different. I tucked…

    7 hours ago

    How the Top 1% Invest (and How Do YOU Compare?)

    How do the top 1% of Americans invest their money, and how do your investments…

    7 hours ago

    Saturn has 128 new moons – more than the rest of the planets combined

    Saturn now has a total of 274 moonsNASA/JPL/Space Science Institute A further 128 moons have…

    8 hours ago

    Six New Games Land on Apple Arcade in April

    Katamari Damacy Rolling LIVE is an Apple Arcade exclusive and sees you rolling up objects…

    8 hours ago

    Trump retreats from 50% tariffs on Canadian metals. Here’s what comes next.

    President Donald Trump on Tuesday backed off a 50% tariff on imports of Canadian steel…

    8 hours ago