Categories: NATURE

A Scottish provenance for the Altar Stone of Stonehenge


  • Bevins, R. E. et al. Constraining the provenance of the Stonehenge ‘Altar Stone’: evidence from automated mineralogy and U–Pb zircon age dating. J. Archaeolog. Sci. 120, 105188 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bevins, R. E. et al. The Stonehenge Altar Stone was probably not sourced from the Old Red Sandstone of the Anglo-Welsh Basin: time to broaden our geographic and stratigraphic horizons? J. Archaeolog. Sci. Rep. 51, 104215 (2023).


    Google Scholar
     

  • Pearson, M. P. et al. in Stonehenge for the Ancestors: Part 2: Synthesis (eds Pearson, M. P. et al.) 47–75 (Sidestone Press, 2022).

  • Pitts, M. W. How to Build Stonehenge (Thames & Hudson, 2022).

  • Nash, D. J. et al. Origins of the sarsen megaliths at Stonehenge. Sci. Adv. 6, eabc0133 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nash, D. J. et al. Petrological and geochemical characterisation of the sarsen stones at Stonehenge. PLoS ONE 16, e0254760 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pearson, M. P. et al. Megalith quarries for Stonehenge’s bluestones. Antiquity 93, 45–62 (2019).

    Article 

    Google Scholar
     

  • Pearson, M. P. et al. Craig Rhos-y-felin: a Welsh bluestone megalith quarry for Stonehenge. Antiquity 89, 1331–1352 (2015).

    Article 

    Google Scholar
     

  • Ixer, R., Turner, P., Molyneux, S. & Bevins, R. The petrography, geological age and distribution of the Lower Palaeozoic Sandstone debitage from the Stonehenge landscape. Wilts. Archaeol. Nat. Hist. Mag. 110, 1–16 (2017).


    Google Scholar
     

  • Ixer, R. & Turner, P. A detailed re-examination of the petrography of the Altar Stone and other non-sarsen sandstones from Stonehenge as a guide to their provenance. Wilts. Archaeol. Nat. Hist. Mag. 99, 1–9 (2006).


    Google Scholar
     

  • Ixer, R., Bevins, R. E., Pirrie, D., Turner, P. & Power, M. No provenance is better than wrong provenance: Milford Haven and the Stonehenge sandstones. Wilts. Archaeol. Nat. Hist. Mag. 113, 1–15 (2020).


    Google Scholar
     

  • Thomas, H. H. The source of the stones of Stonehenge. The Antiq. J. 3, 239–260 (1923).

    Article 

    Google Scholar
     

  • Kendall, R. S. The Old Red Sandstone of Britain and Ireland—a review. Proc. Geol. Assoc. 128, 409–421 (2017).

    Article 

    Google Scholar
     

  • Woodcock, N., Holdsworth, R. E. & Strachan, R. A. in Geological History of Britain and Ireland (eds Woodcock, N. & Strachan, R. A.) Ch. 6 91–109 (Wiley-Blackwell, 2012).

  • Pearson, M. P., Pollard, J., Richards, C., Thomas, J. & Welham, K. Stonehenge: Making Sense of a Prehistoric Mystery (Council for British Archaeology, 2015).

  • Shewan, L. et al. Dating the megalithic culture of laos: Radiocarbon, optically stimulated luminescence and U/Pb zircon results. PLoS ONE 16, e0247167 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelloway, S. et al. Sourcing olive jars using U–Pb ages of detrital zircons: a study of 16th century olive jars recovered from the Solomon Islands. Geoarchaeology 29, 47–60 (2014).

    Article 

    Google Scholar
     

  • Barham, M. et al. The answers are blowin’ in the wind: ultra-distal ashfall zircons, indicators of Cretaceous super-eruptions in eastern Gondwana. Geology 44, 643–646 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gillespie, J., Glorie, S., Khudoley, A. & Collins, A. S. Detrital apatite U–Pb and trace element analysis as a provenance tool: Insights from the Yenisey Ridge (Siberia). Lithos 314–315, 140–155 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Fairey, B. J. et al. The provenance of the Devonian Old Red Sandstone of the Dingle Peninsula, SW Ireland; the earliest record of Laurentian and peri-Gondwanan sediment mixing in Ireland. J. Geol. Soc. 175, 411–424 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Bevins, R. E. et al. Assessing the authenticity of a sample taken from the Altar Stone at Stonehenge in 1844 using portable XRF and automated SEM-EDS. J. Archaeol. Sci. Rep. 49, 103973 (2023).


    Google Scholar
     

  • Bevins, R. E. et al. Linking derived debitage to the Stonehenge Altar Stone using portable X-ray fluorescence analysis. Mineral. Mag. 86, 688–700 (2022).

    Article 

    Google Scholar
     

  • Morton, A. C., Chisholm, J. I. & Frei, D. Provenance of Carboniferous sandstones in the central and southern parts of the Pennine Basin, UK: evidence from detrital zircon ages. Proc. York. Geol. Soc. 63, https://doi.org/10.1144/pygs2020-010 (2021).

  • Cawood, P. A., Nemchin, A. A., Strachan, R., Prave, T. & Krabbendam, M. Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia. J. Geol. Soc. 164, 257–275 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Strachan, R. A., Olierook, H. K. H. & Kirkland, C. L. Evidence from the U–Pb–Hf signatures of detrital zircons for a Baltican provenance for basal Old Red Sandstone successions, northern Scottish Caledonides. J. Geol. Soc. 178, https://doi.org/10.1144/jgs2020-241 (2021).

  • Stevens, T. & Baykal, Y. Detrital zircon U–Pb ages and source of the late Palaeocene Thanet Formation, Kent, SE England. Proc. Geol. Assoc. 132, 240–248 (2021).

    Article 

    Google Scholar
     

  • O’Sullivan, G., Chew, D. M., Kenny, G., Heinrichs, I. & Mulligan, D. The trace element composition of apatite and its application to detrital provenance studies. Earth Sci. Rev. 201, 103044 (2020).

    Article 

    Google Scholar
     

  • Oliver, G., Wilde, S. & Wan, Y. Geochronology and geodynamics of Scottish granitoids from the late Neoproterozoic break-up of Rodinia to Palaeozoic collision. J. Geol. Soc. 165, 661–674 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fleischer, M. & Altschuler, Z. S. The lanthanides and yttrium in minerals of the apatite group-an analysis of the available data. Neu. Jb. Mineral. Mh. 10, 467–480 (1986).


    Google Scholar
     

  • Goodenough, K. M., Millar, I., Strachan, R. A., Krabbendam, M. & Evans, J. A. Timing of regional deformation and development of the Moine Thrust Zone in the Scottish Caledonides: constraints from the U–Pb geochronology of alkaline intrusions. J. Geol. Soc. 168, 99–114 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stacey, J. S. & Kramers, J. D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207–221 (1975).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Evans, J. A. et al. Applying lead (Pb) isotopes to explore mobility in humans and animals. PLoS ONE 17, e0274831 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morton, A., Knox, R. & Frei, D. Heavy mineral and zircon age constraints on provenance of the Sherwood Sandstone Group (Triassic) in the eastern Wessex Basin, UK. Proc. Geol. Assoc. 127, 514–526 (2016).

    Article 

    Google Scholar
     

  • Morton, A., Hounslow, M. W. & Frei, D. Heavy-mineral, mineral-chemical and zircon-age constraints on the provenance of Triassic sandstones from the Devon coast, southern Britain. Geologos 19, 67–85 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Phillips, E. R., Smith, R. A., Stone, P., Pashley, V. & Horstwood, M. Zircon age constraints on the provenance of Llandovery to Wenlock sandstones from the Midland Valley terrane of the Scottish Caledonides. Scott. J. Geol. 45, 131–146 (2009).

    Article 

    Google Scholar
     

  • McKellar, Z., Hartley, A. J., Morton, A. C. & Frei, D. A multidisciplinary approach to sediment provenance analysis of the late Silurian–Devonian Lower Old Red Sandstone succession, northern Midland Valley Basin, Scotland. J. Geol. Soc. 177, 297–314 (2019).

    Article 

    Google Scholar
     

  • Beranek, L. P., Gee, D. G. & Fisher, C. M. Detrital zircon U–Pb–Hf isotope signatures of Old Red Sandstone strata constrain the Silurian to Devonian paleogeography, tectonics, and crustal evolution of the Svalbard Caledonides. GSA Bull. 132, 1987–2003 (2020).

    Article 
    CAS 

    Google Scholar
     

  • John, B. The Stonehenge Bluestones (Greencroft Books, 2018).

  • John, B. The Stonehenge bluestones did not come from Waun Mawn in West Wales. The Holocene https://doi.org/10.1177/09596836241236318 (2024).

  • Clark, C. D. et al. Growth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE-CHRONO reconstruction. Boreas 51, 699–758 (2022).

    Article 

    Google Scholar
     

  • Gibbard, P. L. & Clark, C. D. in Developments in Quaternary Sciences, Vol. 15 (eds Ehlers, J. et al.) 75–93 (Elsevier, 2011).

  • Bevins, R., Ixer, R., Pearce, N., Scourse, J. & Daw, T. Lithological description and provenancing of a collection of bluestones from excavations at Stonehenge by William Hawley in 1924 with implications for the human versus ice transport debate of the monument’s bluestone megaliths. Geoarchaeology 38, 771–785 (2023).

    Article 

    Google Scholar
     

  • Snoeck, C. et al. Strontium isotope analysis on cremated human remains from Stonehenge support links with west Wales. Sci. Rep. 8, 10790 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viner, S., Evans, J., Albarella, U. & Pearson, M. P. Cattle mobility in prehistoric Britain: strontium isotope analysis of cattle teeth from Durrington Walls (Wiltshire, Britain). J. Archaeolog. Sci. 37, 2812–2820 (2010).

    Article 

    Google Scholar
     

  • Evans, J. A., Chenery, C. A. & Fitzpatrick, A. P. Bronze Age childhood migration of individuals near Stonehenge, revealed by strontium and oxygen isotope tooth enamel analysis. Archaeometry 48, 309–321 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Bradley, R. Beyond the bluestones: links between distant monuments in Late Neolithic Britain and Ireland. Antiquity 98, 821–828 (2024).

    Article 

    Google Scholar
     

  • Bradley, R. Long distance connections within Britain and Ireland: the evidence of insular rock art. Proc. Prehist. Soc. 89, 249–271 (2023).

    Article 

    Google Scholar
     

  • Fairweather, A. D. & Ralston, I. B. M. The Neolithic timber hall at Balbridie, Grampian Region, Scotland: the building, the date, the plant macrofossils. Antiquity 67, 313–323 (1993).

    Article 

    Google Scholar
     

  • Bayliss, A., Marshall, P., Richards, C. & Whittle, A. Islands of history: the Late Neolithic timescape of Orkney. Antiquity 91, 1171–1188 (2017).

    Article 

    Google Scholar
     

  • Parker Pearson, M. et al. in Megaliths and Geology (eds Bouventura, R. et al.) 151–169 (Archaeopress Publishing, 2020).

  • Pigière, F. & Smyth, J. First evidence for cattle traction in Middle Neolithic Ireland: A pivotal element for resource exploitation. PLoS ONE 18, e0279556 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Godwin, H. History of the natural forests of Britain: establishment, dominance and destruction. Philos. Trans. R. Soc. B 271, 47–67 (1975).

    ADS 

    Google Scholar
     

  • Martínková, N. et al. Divergent evolutionary processes associated with colonization of offshore islands. Mol. Ecol. 22, 5205–5220 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bradley, R. & Edmonds, M. Interpreting the Axe Trade: Production and Exchange in Neolithic Britain (Cambridge Univ. Press, 2005).

  • Peacock, D., Cutler, L. & Woodward, P. A Neolithic voyage. Int. J. Naut. Archaeol. 39, 116–124 (2010).

    Article 

    Google Scholar
     

  • Pinder, A. P., Panter, I., Abbott, G. D. & Keely, B. J. Deterioration of the Hanson Logboat: chemical and imaging assessment with removal of polyethylene glycol conserving agent. Sci. Rep. 7, 13697 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harff, J. et al. in Submerged Landscapes of the European Continental Shelf: Quaternary Paleoenvironments (eds Flemming, N. C. et al.) 11–49 (2017).

  • Nordsvan, A. R., Kirscher, U., Kirkland, C. L., Barham, M. & Brennan, D. T. Resampling (detrital) zircon age distributions for accurate multidimensional scaling solutions. Earth Sci. Rev. 204, 103149 (2020).

    Article 

    Google Scholar
     

  • Ixer, R., Bevins, R. & Turner, P. Alternative Altar Stones? Carbonate-cemented micaceous sandstones from the Stonehenge landscape. Wilts. Archaeol. Nat. Hist. Mag. 112, 1–13 (2019).


    Google Scholar
     

  • Paton, C., Hellstrom, J. C., Paul, B., Woodhead, J. D. & Hergt, J. M. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508–2518 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Vermeesch, P. IsoplotR: a free and open toolbox for geochronology. Geosci. Front. 9, 1479–1493 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 211, 47–69 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sláma, J. et al. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Wiedenbeck, M. et al. Three natural zircon standards for U-Th-Pb, Lu–Hf, trace element and REE analyses. Geostand. Newslett. 19, 1–23 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Stern, R. A., Bodorkos, S., Kamo, S. L., Hickman, A. H. & Corfu, F. Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostand. Geoanal. Res. 33, 145–168 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Marsh, J. H., Jørgensen, T. R. C., Petrus, J. A., Hamilton, M. A. & Mole, D. R. U-Pb, trace element, and hafnium isotope composition of the Maniitsoq zircon: a potential new Archean zircon reference material. Goldschmidt Abstr. 2019, 18 (2019).

  • Vermeesch, P. On the treatment of discordant detrital zircon U–Pb data. Geochronology 3, 247–257 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gehrels, G. in Tectonics of Sedimentary Basins: Recent Advances (eds Busby, C. & Azor, A.) 45–62 (2011).

  • Vermeesch, P. How many grains are needed for a provenance study? Earth Planet. Sci. Lett. 224, 441–451 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dröllner, M., Barham, M., Kirkland, C. L. & Ware, B. Every zircon deserves a date: selection bias in detrital geochronology. Geol. Mag. 158, 1135–1142 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zutterkirch, I. C., Kirkland, C. L., Barham, M. & Elders, C. Thin-section detrital zircon geochronology mitigates bias in provenance investigations. J. Geol. Soc. 179, jgs2021–070 (2021).

    Article 

    Google Scholar
     

  • Morton, A., Waters, C., Fanning, M., Chisholm, I. & Brettle, M. Origin of Carboniferous sandstones fringing the northern margin of the Wales-Brabant Massif: insights from detrital zircon ages. Geol. J. 50, 553–574 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Luvizotto, G. et al. Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chem. Geol. 261, 346–369 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zack, T. et al. In situ U–Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications. Contrib. Mineral. Petrol. 162, 515–530 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dröllner, M., Barham, M. & Kirkland, C. L. Reorganization of continent-scale sediment routing based on detrital zircon and rutile multi-proxy analysis. Basin Res. 35, 363–386 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Liebmann, J., Barham, M. & Kirkland, C. L. Rutile ages and thermometry along a Grenville anorthosite pathway. Geochem. Geophys. Geosyst. 24, e2022GC010330 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zack, T. & Kooijman, E. Petrology and geochronology of rutile. Rev. Mineral. Geochem. 83, 443–467 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Thompson, J. et al. Matrix effects in Pb/U measurements during LA-ICP-MS analysis of the mineral apatite. J. Anal. At. Spectrom. 31, 1206–1215 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Schmitz, M. D., Bowring, S. A. & Ireland, T. R. Evaluation of Duluth Complex anorthositic series (AS3) zircon as a U–Pb geochronological standard: new high-precision isotope dilution thermal ionization mass spectrometry results. Geochim. Cosmochim. Acta 67, 3665–3672 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schoene, B. & Bowring, S. U–Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contrib. Mineral. Petrol. 151, 615–630 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thomson, S. N., Gehrels, G. E., Ruiz, J. & Buchwaldt, R. Routine low-damage apatite U–Pb dating using laser ablation-multicollector-ICPMS. Geochem. Geophys. Geosyst. 13, https://doi.org/10.1029/2011GC003928 (2012).

  • Barfod, G. H., Krogstad, E. J., Frei, R. & Albarède, F. Lu–Hf and PbSL geochronology of apatites from Proterozoic terranes: a first look at Lu–Hf isotopic closure in metamorphic apatite. Geochim. Cosmochim. Acta 69, 1847–1859 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McDowell, F. W., McIntosh, W. C. & Farley, K. A. A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard Chem. Geol. 214, 249–263 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kirkland, C. L. et al. Apatite: a U–Pb thermochronometer or geochronometer? Lithos 318-319, 143–157 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Simpson, A. et al. In-situ Lu Hf geochronology of garnet, apatite and xenotime by LA ICP MS/MS. Chem. Geol. 577, 120299 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Glorie, S. et al. Robust laser ablation Lu–Hf dating of apatite: an empirical evaluation. Geol. Soc. Lond. Spec. Publ. 537, 165–184 (2024).

    Article 

    Google Scholar
     

  • Norris, C. & Danyushevsky, L. Towards estimating the complete uncertainty budget of quantified results measured by LA-ICP-MS. Goldschmidt Abstr. 2018, 1894 (2018).

  • Nebel, O., Morel, M. L. A. & Vroon, P. Z. Isotope dilution determinations of Lu, Hf, Zr, Ta and W, and Hf isotope compositions of NIST SRM 610 and 612 glass wafers. Geostand. Geoanal. Res. 33, 487–499 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Kharkongor, M. B. K. et al. Apatite laser ablation LuHf geochronology: A new tool to date mafic rocks. Chem. Geol. 636, 121630 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Glorie, S. et al. Detrital apatite Lu–Hf and U–Pb geochronology applied to the southwestern Siberian margin. Terra Nova 34, 201–209 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Spencer, C. J., Kirkland, C. L., Roberts, N. M. W., Evans, N. J. & Liebmann, J. Strategies towards robust interpretations of in situ zircon Lu–Hf isotope analyses. Geosci. Front. 11, 843–853 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jochum, K. P. et al. GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand. Geoanal. Res. 29, 333–338 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Janousek, V., Farrow, C. & Erban, V. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J. Petrol. 47, 1255–1259 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boynton, W. V. in Developments in Geochemistry, Vol. 2 (ed. Henderson, P.) 63–114 (Elsevier, 1984).

  • Landing, E., Keppie, J. D., Keppie, D. F., Geyer, G. & Westrop, S. R. Greater Avalonia—latest Ediacaran–Ordovicia “peribaltic” terrane bounded by continental margin prisms (“Ganderia”, Harlech Dome, Meguma): review, tectonic implications, and paleogeography. Earth Sci. Rev. 224, 103863 (2022).



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Qualcomm wins a legal battle over Arm chip licensing

    A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…

    17 hours ago

    Three Comic/Movie/Band Reviews | Cup of Jo

    Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…

    19 hours ago

    Actually, Flipping Properties Can Improve Housing Affordability—Here’s How

    15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…

    19 hours ago

    Is solar geoengineering research having its moment?

    Particles in ship exhaust inadvertently cause cloud brightening – some geoengineering projects would try to…

    19 hours ago

    5 Great Games to Put You in the Winter Mood

    The weather outside is frightful, but the iOS games are so delightful, let it play,…

    19 hours ago

    Banner year for fixed-income funds leaves TCW and Western Asset behind

    A few flagship bond funds from some big-name Southern California-based firms saw outflows of more…

    19 hours ago