Categories: NATURE

A nebular origin for the persistent radio emission of fast radio bursts


  • Zhang, B. The physics of fast radio bursts. Rev. Mod. Phys. 95, 035005 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Michilli, D. et al. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature 553, 182–185 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Niu, C. H. et al. A repeating fast radio burst associated with a persistent radio source. Nature 606, 873–877 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Margalit, B. & Metzger, B. D. A concordance picture of FRB 121102 as a flaring magnetar embedded in a magnetized ion–electron wind nebula. Astrophys. J. Lett. 868, L4 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Metzger, B. D., Margalit, B. & Sironi, L. Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. Mon. Not. R. Astron. Soc. 485, 4091–4106 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, G. et al. X-CIGALE: fitting AGN/galaxy SEDs from X-ray to infrared. Mon. Not. R. Astron. Soc. 491, 740–757 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, Y.-P., Lu, W., Feng, Y., Zhang, B. & Li, D. Temporal scattering, depolarization, and persistent radio emission from magnetized inhomogeneous environments near repeating fast radio burst sources. Astrophys. J. Lett. 928, L16 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Sridhar, N. & Metzger, B. D. Radio nebulae from hyperaccreting X-ray binaries as common-envelope precursors and persistent counterparts of fast radio bursts. Astrophys. J. 937, 5 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Yang, Y.-P., Li, Q.-C. & Zhang, B. Are persistent emission luminosity and rotation measure of fast radio bursts related? Astrophys. J. 895, 7 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Chime/FRB Collaboration. Recent high activity from a repeating fast radio burst discovered by CHIME/FRB. The Astronomer’s Telegram 14497, 1 (2021).

    ADS 

    Google Scholar
     

  • Lanman, A. E. et al. A sudden period of high activity from repeating fast radio burst 20201124a. Astrophys. J. 927, 59 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Nimmo, K. et al. Milliarcsecond localization of the repeating FRB 20201124A. Astrophys. J. Lett. 927, L3 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Piro, L. et al. The fast radio burst FRB 20201124A in a star-forming region: constraints to the progenitor and multiwavelength counterparts. Astron. Astrophys. 656, L15 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dong, Y. et al. Mapping obscured star formation in the host galaxy of FRB 20201124A. Astrophys. J. 961, 44 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Marcote, B. et al. VLBI localization of FRB 20201124A and absence of persistent emission on milliarcsecond scales. The Astronomer’s Telegram 14603, 1 (2021).

    ADS 

    Google Scholar
     

  • Fong, W.-f et al. Chronicling the host galaxy properties of the remarkable repeating FRB 20201124A. Astrophys. J. Lett. 919, L23 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ravi, V. et al. The host galaxy and persistent radio counterpart of FRB 20201124A. Mon. Not. R. Astron. Soc. 513, 982–990 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Murase, K., Kashiyama, K. & Mészáros, P. A burst in a wind bubble and the impact on baryonic ejecta: high-energy gamma-ray flashes and afterglows from fast radio bursts and pulsar-driven supernova remnants. Mon. Not. R. Astron. Soc. 461, 1498–1511 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Metzger, B. D., Berger, E. & Margalit, B. Millisecond magnetar birth connects FRB 121102 to superluminous supernovae and long-duration gamma-ray bursts. Astrophys. J. 841, 14 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Margalit, B. et al. Unveiling the engines of fast radio bursts, superluminous supernovae, and gamma-ray bursts. Mon. Not. R. Astron. Soc. 481, 2407–2426 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • CASA Team et al. CASA, the Common Astronomy Software Applications for radio astronomy. Publ. Astron. Soc. Pac. 134, 114501 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Carrasco, E. et al. MEGARA, the R=6000-20000 IFU and MOS of GTC. Proc. SPIE 10702, 1070216 (2018).


    Google Scholar
     

  • de Paz, A. G. et al. First scientific observations with MEGARA at GTC. Proc. SPIE 10702, 1070217 (2018).


    Google Scholar
     

  • Pascual, S., Cardiel, N., Picazo-Sanchez, P., Castillo-Morales, A. & de Paz, A. G. guaix-ucm/megaradrp: v0.12.0. Zenodo https://doi.org/10.5281/zenodo.6043992 (2022).

  • Chamorro-Cazorla, M. et al. MEGADES: MEGARA galaxy disc evolution survey. Astron. Astrophys. 670, A117 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Oke, J. B. Faint spectrophotometric standard stars. Astron. J. 99, 1621–1631 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Beelen, A. et al. 350 μm dust emission from high-redshift quasars. Astrophys. J. 642, 694–701 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • da Cunha, E. et al. On the effect of the cosmic microwave background in high-redshift (sub-)millimeter observations. Astrophys. J. 766, 13 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Schreiber, C. et al. Dust temperature and mid-to-total infrared color distributions for star-forming galaxies at 0 < z < 4. Astron. Astrophys. 609, A30 (2018).

    Article 

    Google Scholar
     

  • Lamperti, I. et al. JINGLE – V. Dust properties of nearby galaxies derived from hierarchical Bayesian SED fitting. Mon. Not. R. Astron. Soc. 489, 4389–4417 (2019).

    ADS 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Osterbrock, D. E. & Ferland, G. J. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei 2nd edn (University Science Books, 2005).

  • Kennicutt, J. & Robert, C. Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astrophys. 36, 189–232 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Condon, J. J. Radio emission from normal galaxies. Annu. Rev. Astron. Astrophys. 30, 575–611 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Klein, U. & Emerson, D. T. A survey of the distributions of 2.8 cm radio continuum in nearby galaxies. Astron. Astrophys. 94, 29–44 (1981).

    ADS 

    Google Scholar
     

  • Gioia, I. M., Gregorini, L. & Klein, U. High frequency radio continuum observations of bright spiral galaxies. Astron. Astrophys. 116, 164–174 (1982).

    ADS 

    Google Scholar
     

  • Tabatabaei, F. S. et al. The radio spectral energy distribution and star-formation rate calibration in galaxies. Astrophys. J. 836, 185 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Kennicutt, J. & Robert, C. Structural properties of giant H II regions in nearby galaxies. Astrophys. J. 287, 116–130 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Conti, P. S. & Crowther, P. A. MSX mid-infrared imaging of massive star birth environments – II. Giant H II regions. Mon. Not. R. Astron. Soc. 355, 899–917 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Anderson, L. D. et al. The WISE catalog of galactic H II regions. Astrophys. J. Suppl. Ser. 212, 1 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Anderson, L. D., Bania, T. M., Balser, D. S. & Rood, R. T. The Green Bank Telescope H II region discovery survey. II. The source catalog. Astrophys. J. Suppl. Ser. 194, 32 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Murphy, E. J. et al. Calibrating extinction-free star formation rate diagnostics with 33 GHz free–free emission in NGC 6946. Astrophys. J. 737, 67 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Quataert, E. & Gruzinov, A. Constraining the accretion rate onto Sagittarius A* using linear polarization. Astrophys. J. 545, 842–846 (2000).

    Article 
    ADS 

    Google Scholar
     

  • McQuinn, M. Locating the “missing” baryons with extragalactic dispersion measure estimates. Astrophys. J. Lett. 780, L33 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Xu, H. et al. A fast radio burst source at a complex magnetized site in a barred galaxy. Nature 609, 685–688 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Draine, B. T. Physics of the Interstellar and Intergalactic Medium (Princeton Univ. Press, 2011).

  • Reynolds, S. P., Gaensler, B. M. & Bocchino, F. Magnetic fields in supernova remnants and pulsar-wind nebulae. Space Sci. Rev. 166, 231–261 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Richards, E. A. The nature of radio emission from distant galaxies: the 1.4 GHz observations. Astrophys. J. 533, 611–630 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Chiaraluce, E. et al. From radio-quiet to radio-silent: low-luminosity Seyfert radio cores. Mon. Not. R. Astron. Soc. 485, 3185–3202 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Panessa, F. et al. The origin of radio emission from radio-quiet active galactic nuclei. Nat. Astron. 3, 387–396 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Behar, E., Vogel, S., Baldi, R. D., Smith, K. L. & Mushotzky, R. F. The mm-wave compact component of an AGN. Mon. Not. R. Astron. Soc. 478, 399–406 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Chen, S., Laor, A., Behar, E., Baldi, R. D. & Gelfand, J. D. The radio emission in radio-quiet quasars: the VLBA perspective. Mon. Not. R. Astron. Soc. 525, 164–182 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Laor, A. & Behar, E. On the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 390, 847–862 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • The Astropy Collaboration et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article 

    Google Scholar
     

  • Petroff, E. et al. FRBCAT: the fast radio burst catalogue. Publ. Astron. Soc. Aust. 33, e045 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article 

    Google Scholar
     

  • Spitler, L. G. et al. Fast radio burst discovered in the Arecibo pulsar ALFA survey. Astrophys. J. 790, 101 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Tendulkar, S. P. et al. The host galaxy and redshift of the repeating fast radio burst FRB 121102. Astrophys. J. Lett. 834, L7 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Marcote, B. et al. The repeating fast radio burst FRB 121102 as seen on milliarcsecond angular scales. Astrophys. J. Lett. 834, L8 (2017).

    Article 
    ADS 

    Google Scholar
     

  • The CHIME/FRB Collaboration et al. CHIME/FRB discovery of eight new repeating fast radio burst sources. Astrophys. J. Lett. 885, L24 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Marcote, B. et al. A repeating fast radio burst source localized to a nearby spiral galaxy. Nature 557, 190–194 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bannister, K. W. et al. A single fast radio burst localized to a massive galaxy at cosmological distance. Science 365, 565–570 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Prochaska, J. X. et al. The low density and magnetization of a massive galaxy halo exposed by a fast radio burst. Science 365, aay0073 (2019).


    Google Scholar
     

  • Anna-Thomas, R. et al. Magnetic field reversal in the turbulent environment around a repeating fast radio burst. Science 380, 599–603 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhardwaj, M. et al. A nearby repeating fast radio burst in the direction of M81. Astrophys. J. Lett. 910, L18 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kirsten, F. et al. A repeating fast radio burst source in a globular cluster. Nature 602, 585–589 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhandari, S. et al. A nonrepeating fast radio burst in a dwarf host galaxy. Astrophys. J. 948, 67 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y.-K. et al. FAST observations of FRB 20220912A: burst properties and polarization characteristics. Astrophys. J. 955, 142 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hewitt, D. M. Milliarcsecond localization of the hyperactive repeating FRB 20220912A. Mon. Not. R. Astron. Soc. 529, 1814–1826 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Masui, K. et al. Dense magnetized plasma associated with a fast radio burst. Nature 528, 523–525 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Petroff, E. et al. A polarized fast radio burst at low Galactic latitude. Mon. Not. R. Astron. Soc. 469, 4465–4482 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Keane, E. F. et al. The host galaxy of a fast radio burst. Nature 530, 453–456 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ravi, V. et al. The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst. Science 354, 1249–1252 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhandari, S. et al. The SUrvey for Pulsars and Extragalactic Radio Bursts – II. New FRB discoveries and their follow-up. Mon. Not. R. Astron. Soc. 475, 1427–1446 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Caleb, M. et al. The SUrvey for Pulsars and Extragalactic Radio Bursts – III. Polarization properties of FRBs 160102 and 151230. Mon. Not. R. Astron. Soc. 478, 2046–2055 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Osłowski, S. et al. Commensal discovery of four fast radio bursts during Parkes Pulsar Timing Array observations. Mon. Not. R. Astron. Soc. 488, 868–875 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Connor, L. et al. A bright, high rotation-measure FRB that skewers the M33 halo. Mon. Not. R. Astron. Soc. 499, 4716–4724 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    The Best Gifts for Travelers in 2024

    Buying gifts, especially thoughtful and useful gifts — is always a little daunting. However, when…

    2 mins ago

    Target Newest Bag Charms Are TikTok’s Latest Accessory Obsession

    Accessories are our favorite impulse purchase, and, it turns out, that a good portion of…

    6 mins ago

    The Greatest Sports Docuseries to Binge for Fans of Action and Drama

    Sports docuseries offer more than just replays of games. They allow you to dive deep…

    14 mins ago

    ‘A highly welcome return to this hellscape world’

    No Ju-han/ NetflixThe brutal Korean satire became a worldwide phenomenon when it first aired in…

    16 mins ago

    Amazon Sundays – Julia Berolzheimer

    This Sunday we’re sharing a curated selection of Amazon finds to carry you into New…

    27 mins ago

    Hot Cocoa Dip Recipe | The Recipe Critic

    This website may contain affiliate links and advertising so that we can provide recipes to…

    28 mins ago